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Guarding Polyominoes under k-Hop Visibility
or Minimum k-Dominating Sets in Grid Graphs*

Christiane Schmidt�

Abstract

We consider a guarding problem in polyominoes: a unit-
square guard sees all unit squares within distance k in
the dual grid graph. The problem is equivalent to the
minimum k-dominating set problem in grid graphs. We
prove NP-completeness of this problem in polyominoes
with holes for k ∈ {1, 2} and provide lower bounds for
all k and matching upper bounds for k ∈ {1, 2} of b m

k+1c
on the number of guards in any polyomino.

1 Introduction

In the classical art gallery problem (AGP), we aim to
place guards in a polygon, such that every point of the
polygon is visible to at least one guard. Visibility is
defined by analogy to human vision: two points u, v ∈ P
see each other if the line segment u, v is fully contained
in P . Various variants for the classical AGP have been
considered (varying both the capabilities of the guards
and the environment to be guarded), and usually we are
interested in two types of questions:

1. Can we compute the minimum cardinality guard set
for a polygon P?

2. What are lower/upper bounds on the number of
guards needed to cover a polygon from a given class?

For the classical AGP, question (1) was answered with
several complexity results: NP-hardness was proven for
different problem variants ([1, 2]). Answers to question
(2) are often referred to as “Art Gallery theorems”.
Chvátal [3] provided the first such result: a tight bound
of bn3 c for simple polygons.

Here, we consider a guarding problem motivated
from serving a city with carsharing (CS) stations: the
demand is given in a granularity of (square) cells, and
we assume that customers are willing to walk a certain
distance to a CS stations—a simplified assumption,
which we can substitute by obtaining demand for
given stations using a multi-agent transport simulation,
MATSim1. We also assume that this walking-range
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bound is the same for the complete city. Then, we
aim to place as few CS stations as possible to serve the
complete city for a given maximum walking range. We
represent the city as a polyomino, potentially with holes
and only walking within the boundary is possible—
e.g., in Stockholm holes usually represent water bodies,
which pedestrians cannot cross. This yields a special
type of “visibility” for a station: all unit squares of the
polyomino reachable when walking inside the polyomino
for at most the given walking range.

Guarding polyominoes has been considered by Biedl
et al. [4], who considered different models of visibility.
(u ∈ P sees v ∈ P if the axis-parallel rectangle spanned
by u, v is fully contained in P ). They provided both
NP-hardness results and art gallery theorems in terms
of the number of unit squares of the polyomino, m.
NP-hardness for another type of visibility (rectangle
visibility) was provided in [5].

An equivalent formulation of our problem is in terms
of the minimum k-dominating set problem (MkDSP):
find a minimum cardinality Dk ⊆ V (G), such that each
graph vertex is connected to a vertex in Dk with a path
of length at most k. We aim to solve MkDSP in grid
graphs (the dual graph of a polyomino). The minimum
dominating set problem is NP-complete [6], hence, the
MkDSP is clearly NP-complete in general graphs.

Notation. A polyomino is a connected polygon P
in the plane formed by joining together |P | = m unit
squares on the square lattice. The dual graph GP of a
polyomino has a vertex for each unit square and {u, v} ∈
E(GP ) if unit squares u, v are adjacent; GP is a grid
graph. P is simple if it has no holes, that is, if every
minimal cycle in the dual grid graph is a 4-cycle.

A unit square v ∈ P is k-hop-visible to a unit square
u ∈ P if the shortest path from u to v in the dual grid
graph of P , GP , has length at most k. See Figure 1 for
an example. Note that for k ≥ 2 this in particular
includes the ability to look around a corner of the
polyomino. A witness placed at unit square u vouches
that at least one guard has to be placed in its k-hop-
visibility region.

Minimum k-hop Guarding Problem (MkGP).
Given: A polyomino P , a range k.
Find: The minimum number cardinality unit-square
guard cover in P under k-hop visibility.
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Figure 1: A polyomino P (black), a unit-square guard g
(green) and its visibility region (light green), k = 2.

2 NP-Completeness

We show NP-completeness of the MkGP in polyominoes
with holes and k = 2. We reduce from PLANAR 3-SAT.

An instance F of the PLANAR 3-SAT problem is
a Boolean formula in 3-CNF consisting of a set C =
{C1, C2, . . . , Cm} of m clauses over n variables V =
{x1, x2, . . . , xn}. Clauses in F contain variables and
negated variables, denoted as literals. A clause is
satisfied iff it contains at least one true literal, and the
formula F is true iff all its clauses are satisfied. The
variable-clause incidence graph G is planar and it is
sufficient to consider formulae where G has a rectilinear
embedding, see Knuth and Raghunathan [7].

We turn the rectilinear embedding of G into a
polyomino: we represent the variables, clauses and
edges by pieces of a polyomino that needs to be
guarded. We construct variable gadgets as shown
in turquoise in Figure 2(a). There exist exactly two
feasible placements of guards for the variable loop
gadget, shown in blue and red in Figure 2(b) and (c) and
corresponding to a truth setting of “true” and “false”,
respectively.

The initial truth value is propagated by a wire
gadget. In Figure 2 we show a wire gadget for the
case that the variable appears in a clause in dark blue,
and for the case that the negated variable appears in
the clause in dark red. We note that a wire can easily
be bend by 90◦. We extend the width of the variable
gadget to connect to further wire gadgets.

The clause gadget is shown in Figure 3(a): Wires
connecting to the three variables connect to it from the
top, the right, and the bottom. The clause gadget can
be covered with exactly two additional guards if one
(see Figure 3(d)-(f)), two (see Figure 3(g)-(i)) or all (see
Figure 3(j)/(k)) variables have a truth setting fulfilling
the clause. If all variables have a truth setting not
fulfilling the clause (see Figure 3(b)), three additional
guards are needed to cover the clause gadget: The k-
hop visibility regions of the three colored witnesses in
Figure 3(b) are pairwise disjoint, hence, at least three
guards are necessary—and sufficient, see Figure 3(c).

Thus, we solve the MkGP optimally iff 1-3 variables
per clause have a truth setting fulfilling the clause,
that is, iff the original PLANAR 3-SAT formula F is
satisfiable. The reduction is possible in polynomial
time. Moreover, given a set of unit-square guards, we

can easily determine the k-hop visibility region of all
guards and check whether all unit squares are covered.
Hence, the MkGP is in NP. This yields:

Theorem 1 MkGP is NP-complete for k = 2 in
polyominoes with holes.

A similar variable and corridor gadget construction
and the clause from Fig. 4 yield NP-completeness also
for k = 1 (due to space restrictions without proof):

Theorem 2 MkGP is NP-complete for k = 1 in
polyominoes with holes.

3 Art Gallery Theorems

In this section, we provide lower bounds for all k
(Theorem 3) and matching upper bounds for k ∈ {1, 2}
(Theorem 4) on the number of guards necessary to cover
polyominoes under k-hop visibility.

Theorem 3 There exist simple polyominoes with m
unit squares that require b m

k+1c guards to cover their
interior under k-hop visibility.

Proof. We construct a double-comb like polyomino: we
alternately add teeth of length k to the top and bottom
of a row of unit squares (the shaft), see Figure 6 for the
construction for k = 1 and k = 2. If m is not divisible
by k + 1 we add x = (m mod k + 1) unit squares to
the right of the shaft. Witnesses placed at the last unit
square of each tooth (shown in pink in Figure 6) have
disjoint k-hop visibility regions (of the shaft only the
unit square to which the tooth is attached belongs to
the k-hop visibility region), hence, we need one guard
per witness. The x unit squares to the right of the shaft
can be covered by the rightmost guard if placed in the
shaft. Let t be the number of teeth, m = t · (k + 1) + x,
we need t = b m

k+1c guards. �

Theorem 4 b m
k+1c guards are always sufficient and

sometimes necessary to cover a polyomino with m unit
squares under k-hop visibility for k ∈ {1, 2}.

Proof. We need to show that b m
r+1c guards are always

sufficient. We give constructive proofs for r ∈ {1, 2}.
Case k = 1. Compute a maximum matching M

in the (bipartite) dual grid graph of P , GP . Every
vertex in GP that is not matched is adjacent to matched
vertices only (otherwise we could extend M). For each
matching edge {u, v} unmatched vertices are adjacent
to u or v only (otherwise, let u′ and v′ be an unmatched
vertex adjacent to u and v, respectively, then M \
{u, v} ∪ {u′, u} ∪ {v, v′} is a larger matching than M).
For each matching edge, we place a guard at the unit
square of the vertex in GP that is adjacent to unmatched
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(a) (b) (c)

Figure 2: (a) Variable gadget in turquoise, wire gadgets in dark blue (in case the variable appears in a clause) and dark red
(in case the negated variable appears in a clause). We associate the solution in (b) and (c) with a truth setting of “true” and
“false”, respectively.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 3: (a) Clause gadget. (b)-(k) The truth setting of the variables connected by the three variable corridors is shown
in red/blue, where light-blue/light-red indicates the visibility region of a guard, a red/blue unit square indicates the guard’s
location. (b) All variables have a truth setting that does not fulfill the clause, then the three colored witnesses (visibility
regions in lighter colors) cannot be covered by the same guard, hence, three guards are necessary, and sufficient (c). If one
variable has a truth setting that does fulfill the clause, (d)-(f), and if two variables have a truth setting that does fulfill the
clause, (g)-(i), two (green) guards suffice to cover the clause gadget. If all variables have a truth setting that does fulfill the
clause, the three witnesses in (j) cannot all be covered with a single guard, the two green guards in (k) are sufficient to cover
the clause gadget.

(a) (b) (c) (d)

Figure 4: Clause gadget for k = 1. (a) If all variables
have a truth setting not fulfilling the clause, the three pink
witnesses cannot be covered by the same guards; three green
guards are sufficient. (b) If one variable has a truth setting
that fulfills the clause two green guards suffice. The other
cases are omitted. Color usage as in Figure 3.

vertices (if any, otherwise we choose one of the two
vertices). This guard covers its matched neighbor and
all unmatched neighbors. Hence, we placed at most
b m
k+1c = bm2 c guards to cover P .

Case k = 2. Again, we compute a maximum
matching M in GP . We build a graph GM based on
M : we create a vertex in GM for each matching edge
and each unmatched vertex in M (V (GM ) = {v{u,u′} :
{u, u′} ∈ M} ∪ {vu : u ∈ GP \M}). Two vertices v, v′

in GM are connected by an edge if:

• For v = v{u,u′}, v
′ = v′{w,w′}: if at least one of the

edges {u,w}, {u,w′}, {u′, w} or {u′, w′} is in E(GP ).
• For v = v{u,u′}, v

′ = v′w: if at least one of {u,w} or
{u,w′} is in E(GP ).

We compute a maximum matching M ′ in GM . Each
matching edge in M ′ represents three or four vertices of
GP . Each unmatched vertex in M ′ represents one or two
vertices of GP . Again, unmatched vertices are adjacent

to at most one of the vertices per edge in M ′. If an
unmatched vertex is adjacent to more than one matched
vertex, we assign it to one of them. In the remainder of
this proof adjacent unmatched vertex/vertices refers to
the assigned adjacent unmatched vertex/vertices only.
We distinguish six cases, see Figure 5 for examples:

1. e = {v{u,u′}, v{w,w′}} ∈ M ′ is not adjacent to any
unmatched vertex in M ′: we have a path of length 4,
and place a guard on one of the two vertices that are
adjacent to two of the other three vertices. Hence,
the single guard covers 4 unit squares.

2. e = {v{u,u′}, v{w,w′}} ∈ M ′ is adjacent to
unmatched vertices, all unmatched vertices adjacent
to e represent one vertex from GP . W.l.o.g. let the
unmatched vertices be adjacent to v{u,u′}:

(a) {u,w} ∈ GP or {u,w′} ∈ GP , but {u′, w} /∈ GP

and {u′, w′} /∈ GP : We place a guard on u, then
u, u′, w, w′ and all unmatched vertices adjacent
to v{u,u′} are covered. The single guard at u
covers at least 5 unit squares.

(b) {u,w} ∈ GP and {u′, w′} ∈ GP (or {u′, w} ∈
GP and {u,w′} ∈ GP ): A guard placed on u or
u′ covers u, u′, w, w′ and all unmatched vertices
adjacent to v{u,u′}. The single guard covers at
least 5 unit squares.

3. e = {v{u,u′}, v{w,w′}} ∈ M ′ is adjacent to
unmatched vertices, some unmatched vertices
adjacent to e represent two vertices from GP . Let
the unmatched vertices be adjacent to v{u,u′}: We



4th Iranian Conference on Computational Geometry

u' u

w w'

1.

u'uw

w'

y

y'

y''

2.(a)

u'u

w w'

y y'

y''

2(b)

u'uw

w' x

x'

3.

u'u

w

4.

u'uwy

y'

5.

w u'u

y

x

x'

6.(a.i)

w u'u

y

x

x'

6.(a.ii)

w u'u

y

z

z'

x x'

6.(a.iii)

u'

u

x

x'w

6.(b)

Figure 5: Cases from the proof of Lemma 4, k = 2. Vertices and M in GP shown in black; vertices and M ′ in GM shown in
turquoise; guards shown in green. Optional unit squares are shown faded.

(a)
(b)

Figure 6: Lower bound construction for polyominoes that
require b m

k+1
c guards under k-hop visibility for (a) k = 1,

(b) k = 2. Witnesses are shown in pink.

place two guards at u and u′ and cover u, u′, w, w′

and all unmatched vertices adjacent to v{u,u′}.
These two guards cover at least 6 unit squares:
u, u′, w, w′ and at least one pair of vertices x, x′,
where v{x,x′} unmatched in M ′ and adjacent to
v{u,u′}. Hence, on average, each of the guards covers
at least 3 unit squares.

4. e = {v{u,u′}, vw} ∈ M ′ is not adjacent to any
unmatched vertex in M ′, w.l.o.g. {u,w} ∈ E(GP ):
We place a guard on u, it covers 3 unit squares.

5. e = {v{u,u′}, vw} ∈ M ′ is adjacent to unmatched
vertices adjacent to e representing one vertex from
GP , w.l.o.g. {u,w} ∈ E(GP ): We place a guard
on u, which covers u, u′ and w and all vertices
adjacent to these three (independent of whether all
are adjacent to v{u,u′} or to vw). A single guard
covers at least 4 unit squares.

6. e = {v{u,u′}, vw} ∈ M ′ is adjacent to unmatched
vertices, some of these represent two vertices from
GP , w.l.o.g. {u,w} ∈ E(GP ):

(a) The unmatched vertices are adjacent to v{u,u′}:
(i) For all unmatched vertices vy, y is adjacent to

u and for all unmatched vertices v{x,x′} x or x′

is adjacent to u: We place a guard at u. This
single guard covers at least 5 unit squares.

(ii) For all unmatched vertices vy, y is adjacent to
u′ and for all unmatched vertices v{x,x′} x or x′

is adjacent to u′: We place a guard at u′. This
single guard covers at least 5 unit squares.

(iii) We have at least one unmatched vertex for
which one of the vertices in GP it represents
is adjacent to u and one for which one of the
vertices in GP it represents is adjacent to u′.
We place two guards at u and u′, all adjacent
unmatched vertices representing a matching
edge contain vertices within distance at most

2 from u and u′. The two guards cover at least
u, u′, w, at least one pair of vertices x, x′, where
v{x,x′} unmatched in M ′ and adjacent to v{u,u′}
and least another single vertex or vertex pair
adjacent to v{u,u′}. Hence, 2 guards cover at
least 6 unit squares—on average, each guard
covers at least 3 unit squares.

(b) The unmatched vertex/vertices are adjacent to
vw: We place a guard at w; it sees u, u′, w as
well as at least one pair of vertices x, x′, where
v{x,x′} unmatched in M ′ and adjacent to vw
because all these vertices have distance at most
2 to w. The guard covers at least 5 unit squares.

Each guard covers at least 3 unit squares, hence, we
yield that b m

k+1c = bm3 c guards are always sufficient. �

4 Open Problems

We leave the computational complexity in simple
polyominoes and upper bounds on the number of guards
necessary to cover polyominoes under k-hop visibility
for k ≥ 3 as open problems.
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