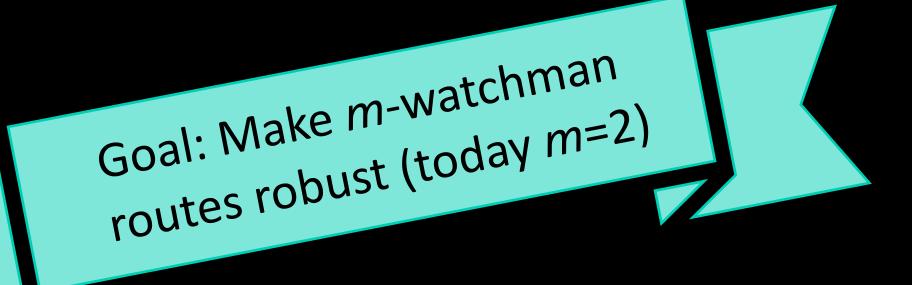
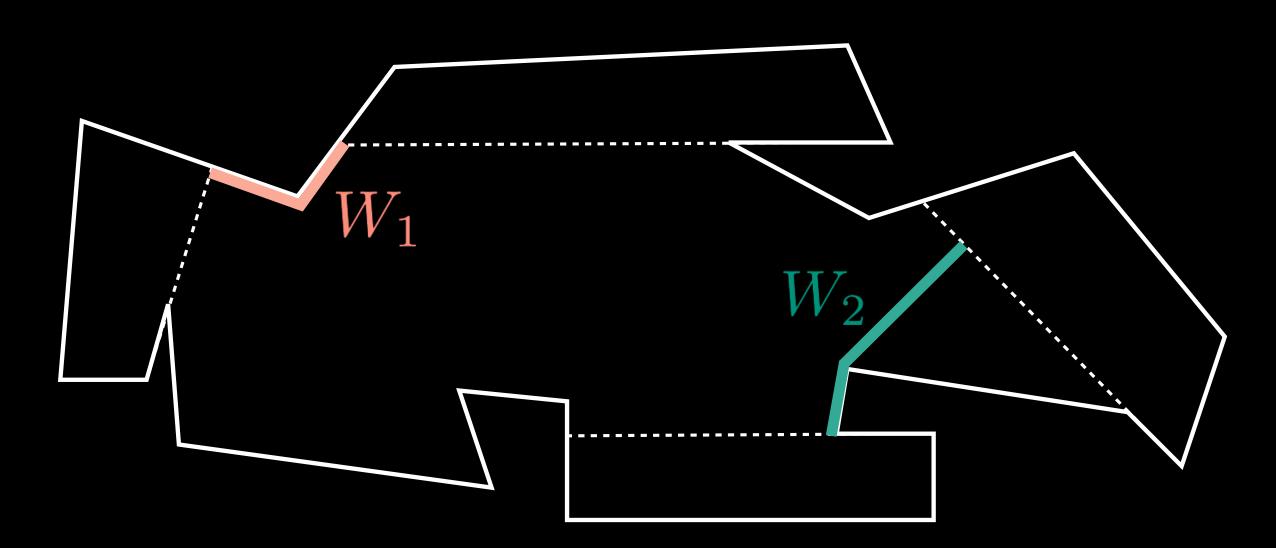
Segment Watchman Routes

Anna Brötzner, Omrit Filtser, Bengt J. Nilsson, Christian Rieck, Christiane Schmidt

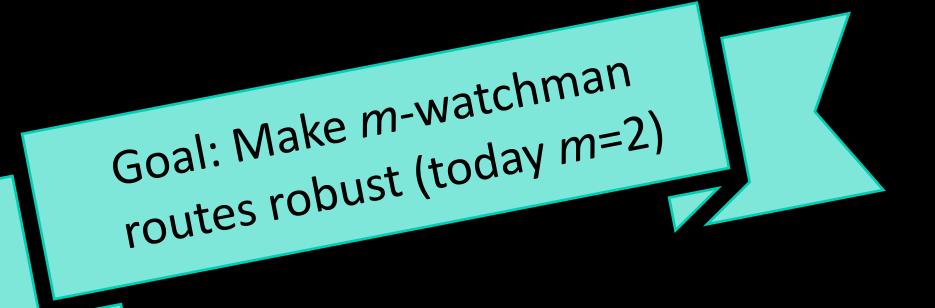
Reminder: m-watchmen problem



- Given: Polygon *P*, *m* watchmen with or without starting points
- Find: *m* routes, such that all points in *P* are visible from at least one point on one of the routes—usual objectives: min-max or min-sum of the *m* routes



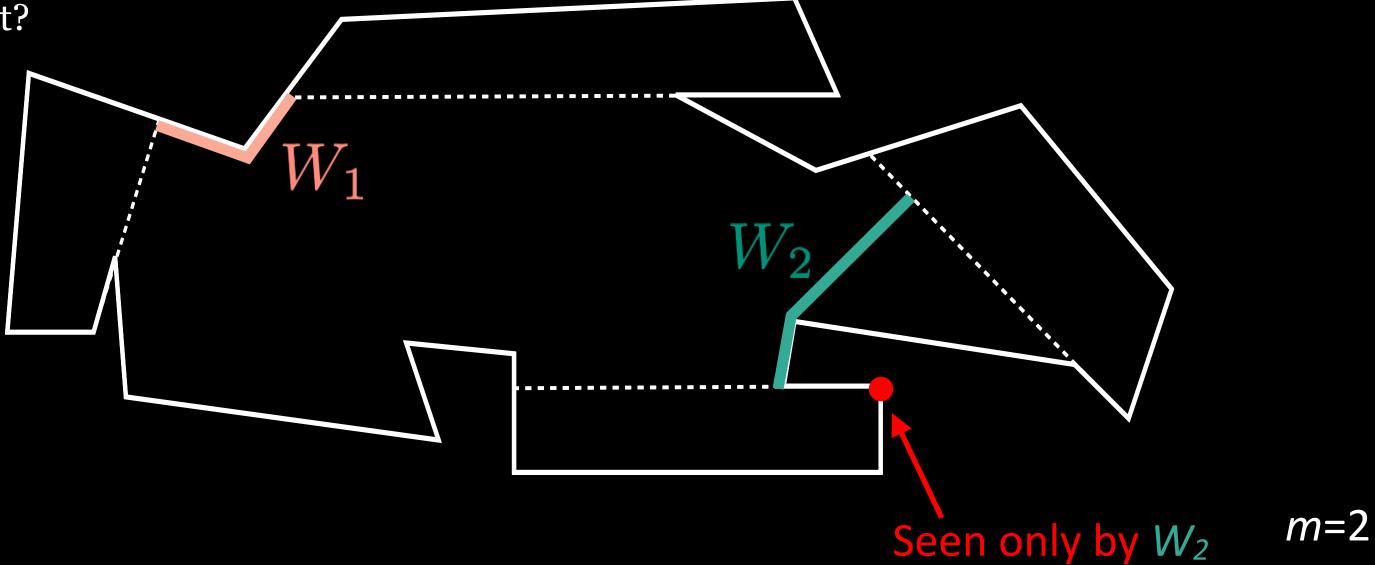
m=2

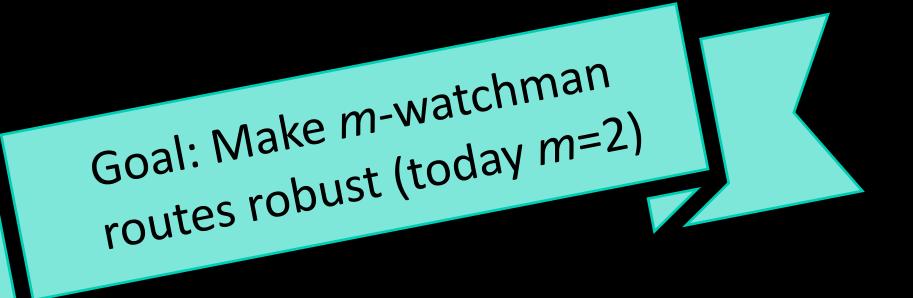


- Given: Polygon *P*, *m* watchmen with or without starting points
- Find: *m* routes, such that all points in *P* are visible from at least one point on one of the routes—usual objectives: min-max or min-sum of the *m* routes

We are guaranteed to see everything, but what happens if:

- Some watchman might fail during the movement?

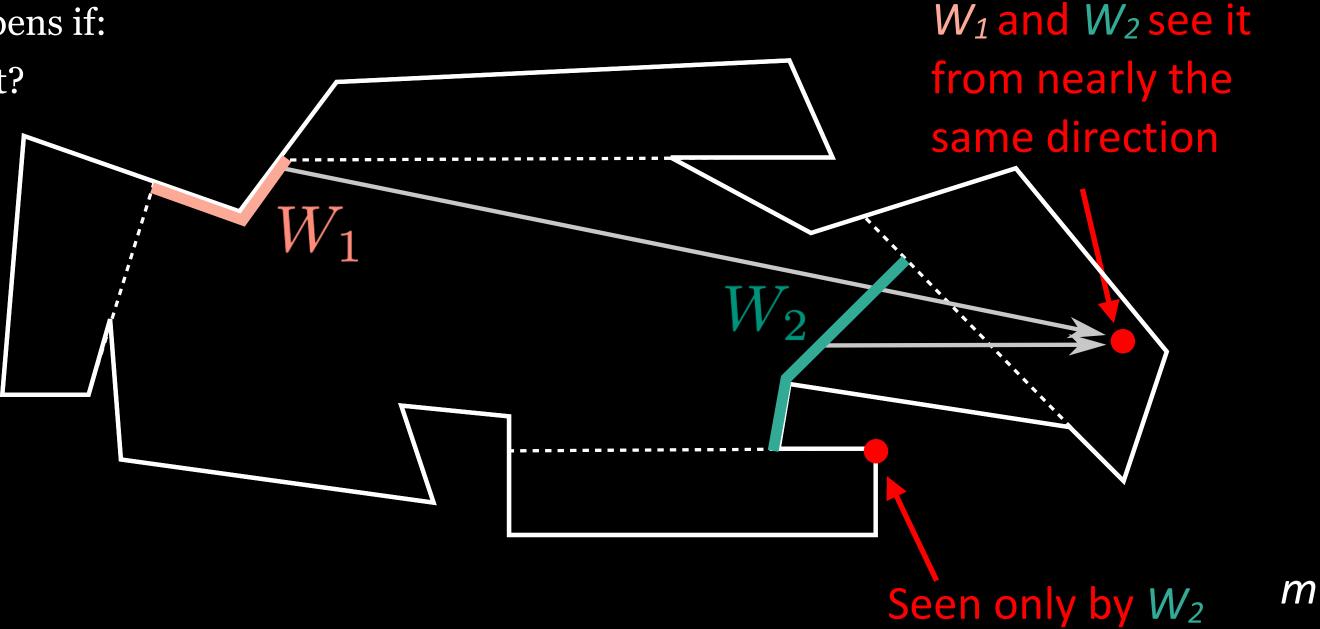


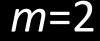


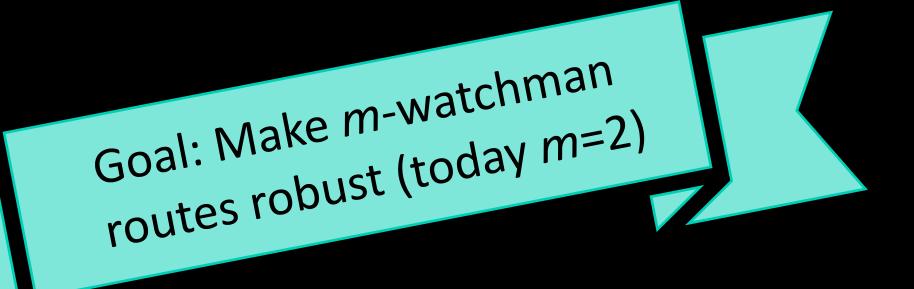
- Given: Polygon *P*, *m* watchmen with or without starting points
- Find: *m* routes, such that all points in *P* are visible from at least one point on one of the routes—usual objectives: min-max or min-sum of the *m* routes

We are guaranteed to see everything, but what happens if:

- Some watchman might fail during the movement?
- Small obstacles may appear in the polygon?
- Vision from one direction is hampered?



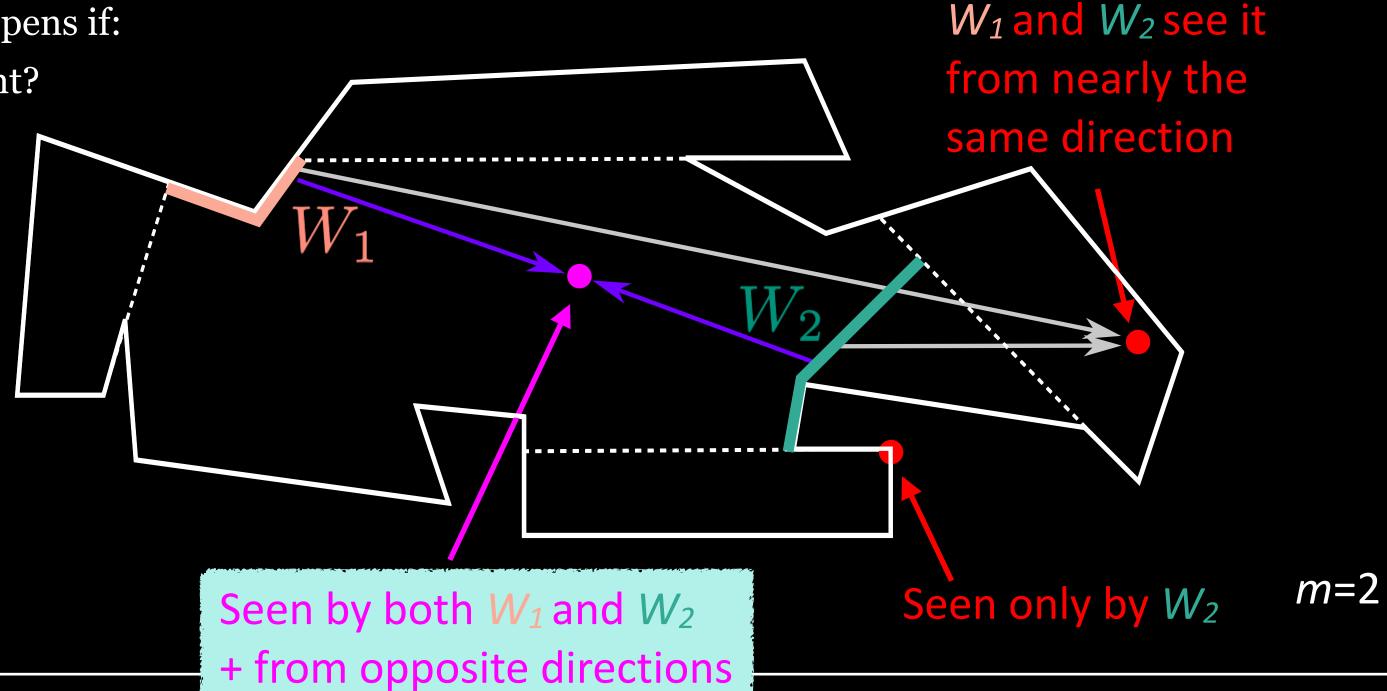


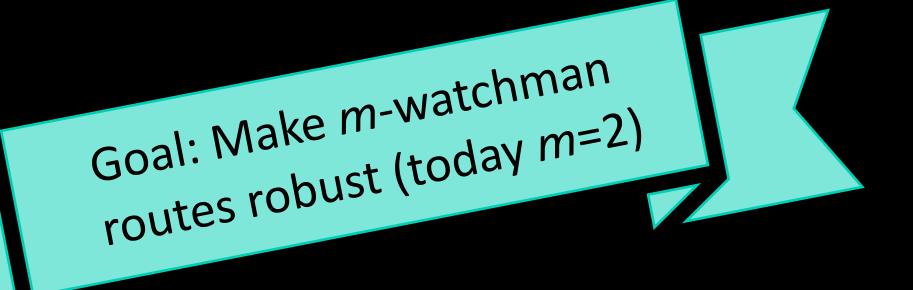


- Given: Polygon *P*, *m* watchmen with or without starting points
- Find: *m* routes, such that all points in *P* are visible from at least one point on one of the routes—usual objectives: min-max or min-sum of the *m* routes

We are guaranteed to see everything, but what happens if:

- Some watchman might fail during the movement?
- Small obstacles may appear in the polygon?
- Vision from one direction is hampered?

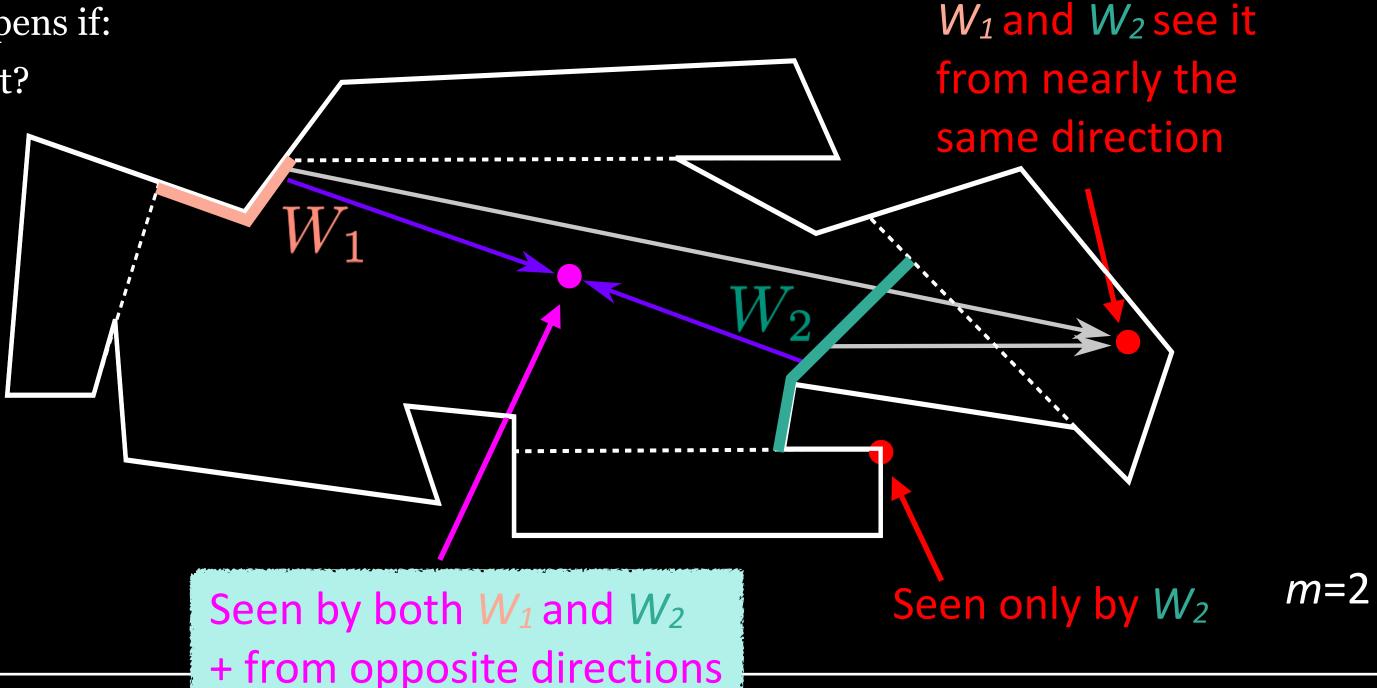




- Given: Polygon *P*, *m* watchmen with or without starting points
- Find: *m* routes, such that all points in *P* are visible from at least one point on one of the routes—usual objectives: min-max or min-sum of the *m* routes

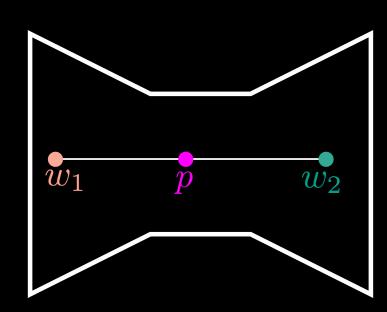
We are guaranteed to see everything, but what happens if:

- Some watchman might fail during the movement?
- Small obstacles may appear in the polygon?
- Vision from one direction is hampered?
- → We want to make our routes robust against some of these aspects!



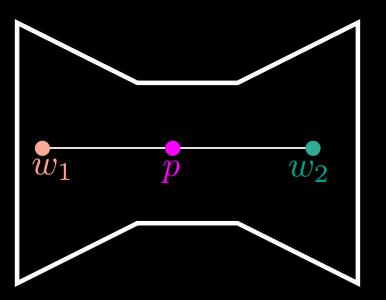
A point p is segment-guarded by two points w_1 and w_2 in the polygon, if:

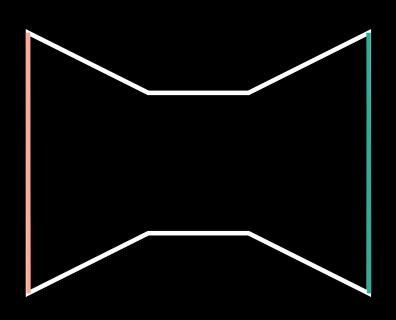
- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)



A point p is segment-guarded by two points w_1 and w_2 in the polygon, if:

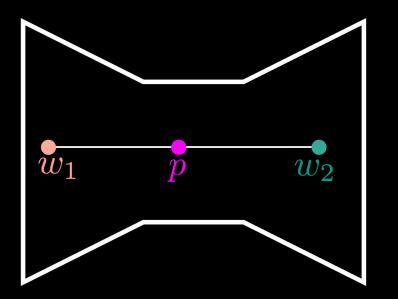
- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

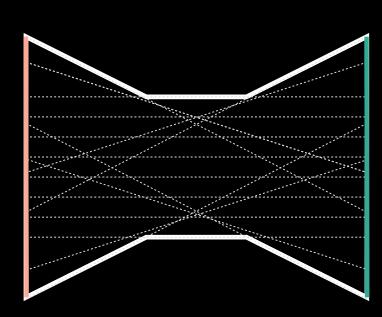


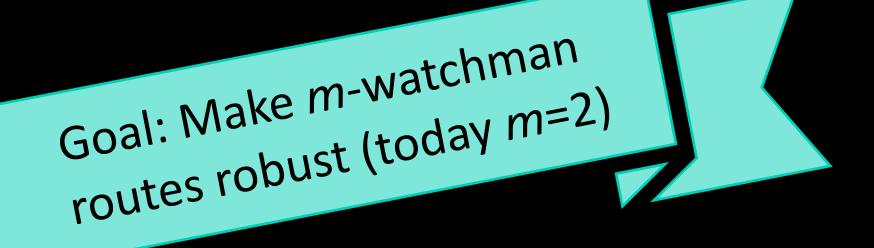


A point p is segment-guarded by two points w_1 and w_2 in the polygon, if:

- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

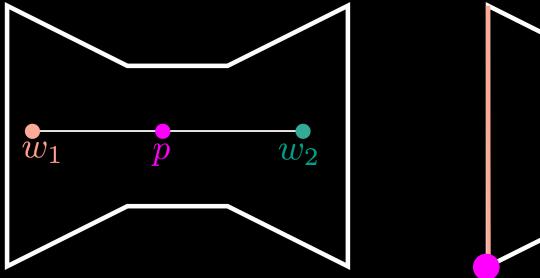


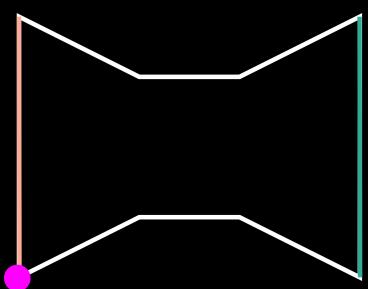




- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

Two routes W_1 and W_2 are *segment watchman routes* if for every point p in the polygon, there exists $w_1 \in W_1$ and $w_2 \in W_2$, such that p is segment-guarded by w_1 and w_2 .

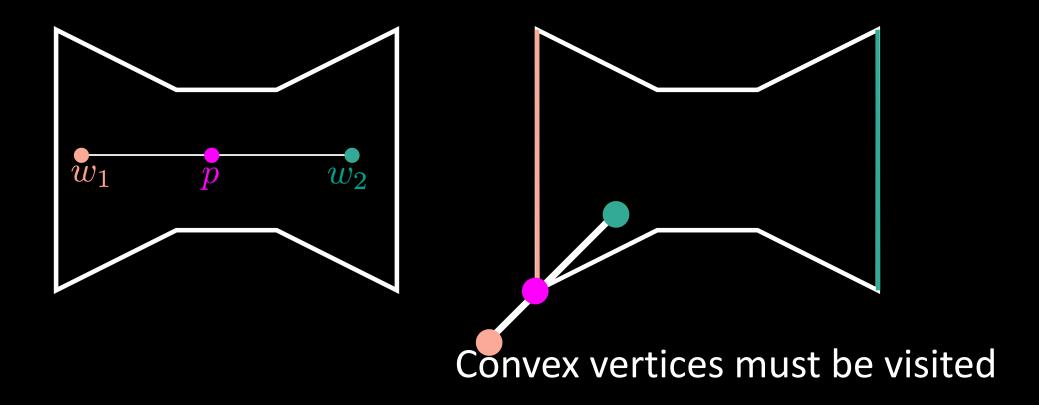




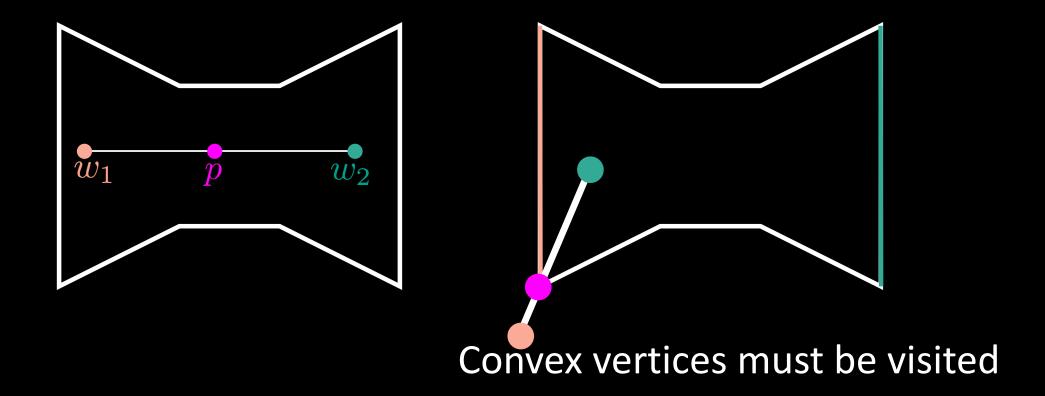
Convex vertices must be visited

A point p is segment-guarded by two points w_1 and w_2 in the polygon, if:

- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

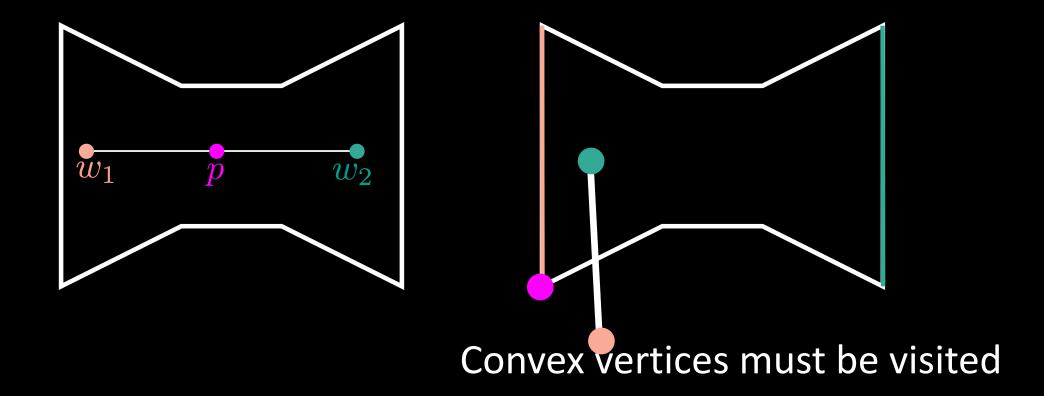


- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)



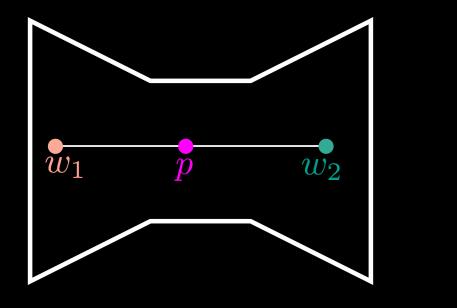
A point p is segment-guarded by two points w_1 and w_2 in the polygon, if:

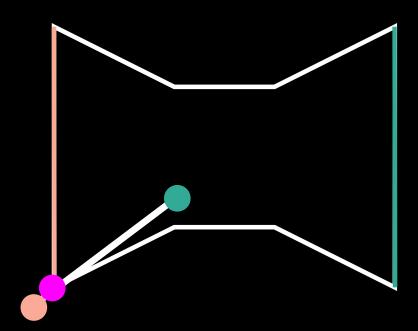
- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)



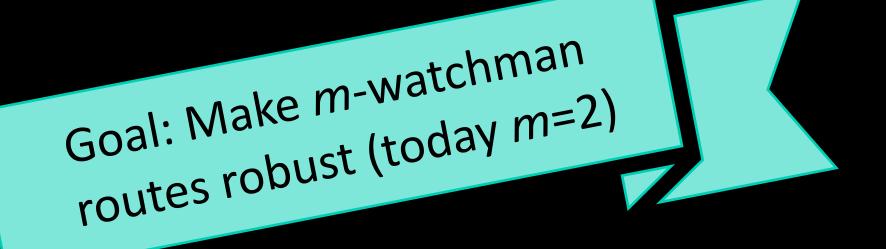
A point p is segment-guarded by two points w_1 and w_2 in the polygon, if:

- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

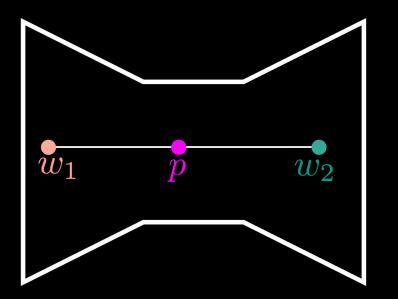


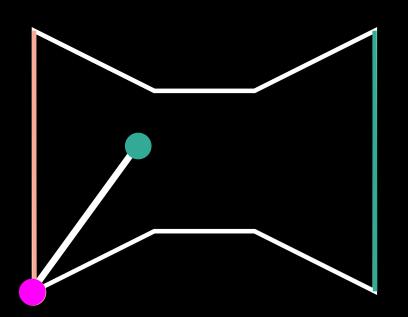


Convex vertices must be visited

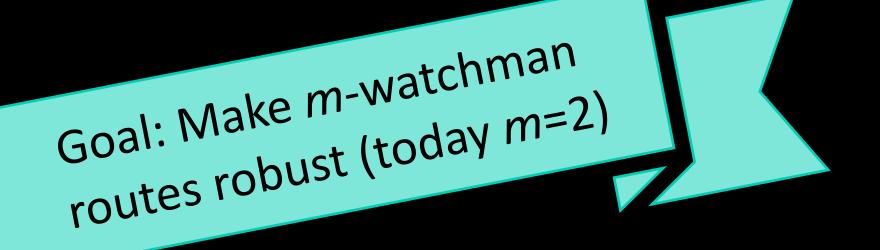


- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)



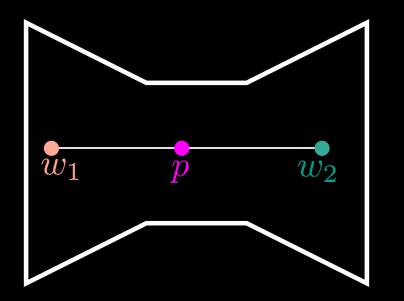


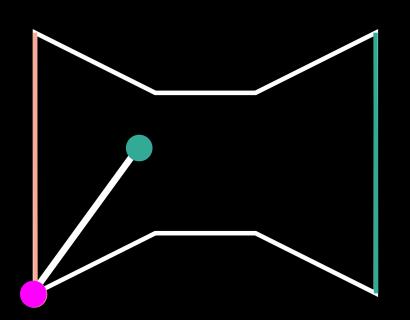
Convex vertices must be visited



- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

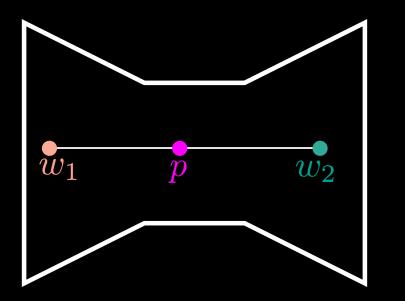
Two routes W_1 and W_2 are segment watchman routes if for every point p in the polygon, there exists $w_1 \in W_1$ and $w_2 \in W_2$, such that p is segment-guarded by w_1 and w_2 .

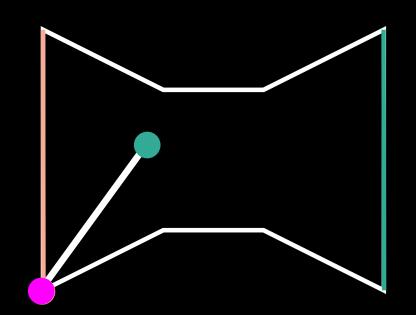


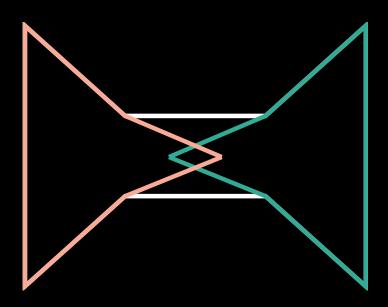


Convex vertices must be visited

- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)



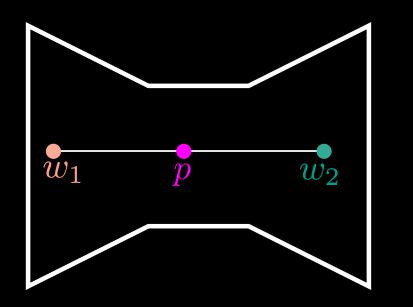


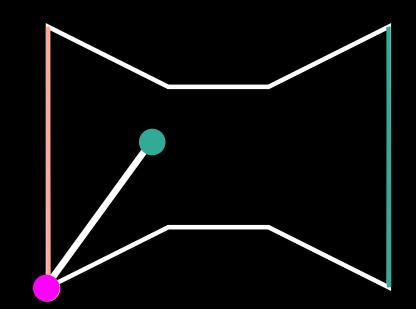


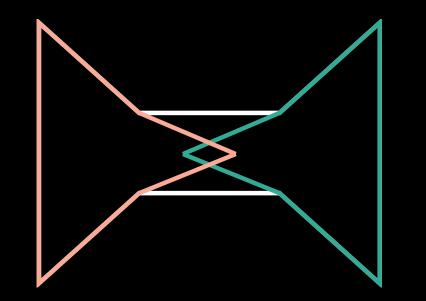
Convex vertices must be visited Routes may intersect

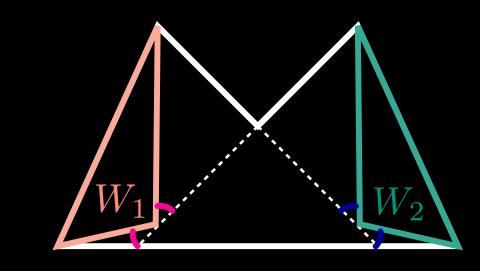
- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

Two routes W_1 and W_2 are segment watchman routes if for every point p in the polygon, there exists $w_1 \in W_1$ and $w_2 \in W_2$, such that p is segment-guarded by w_1 and w_2 .



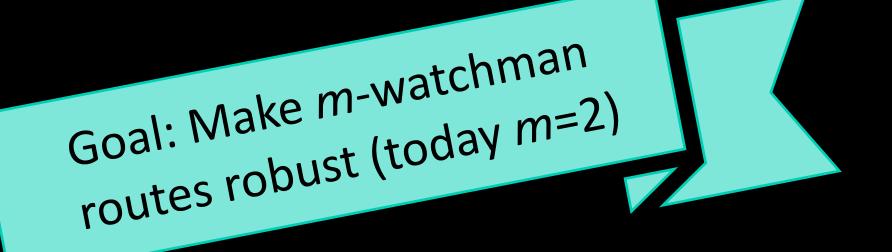






Both are watchman routes: Each segment watchman route must see each point in P

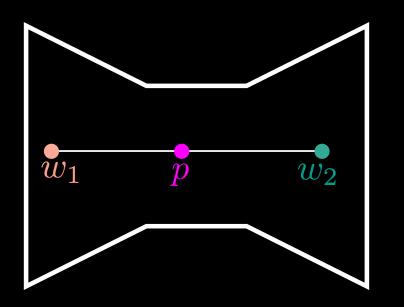
Convex vertices must be visited Routes may intersect

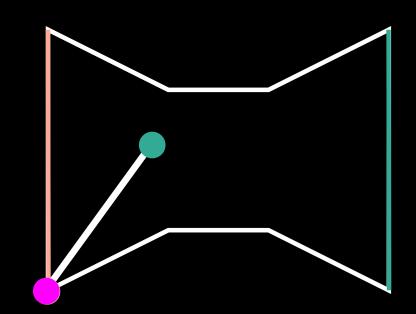


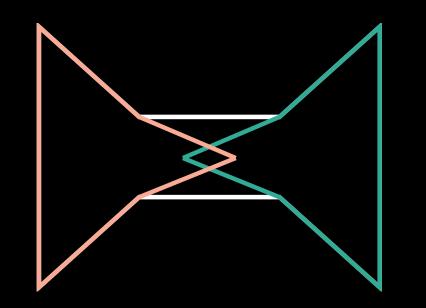
- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P

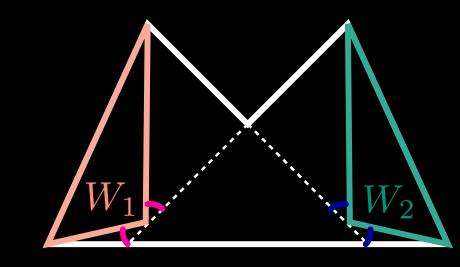
Two routes W_1 and W_2 are segment watchman routes if for every point p in the polygon, there exists $w_1 \in W_1$ and $w_2 \in W_2$, such that p is segment-guarded by w_1 and w_2 .

We do not require the watchmen to be at w_1 and w_2 at the same time!









Both are watchman routes: Each segment watchman route

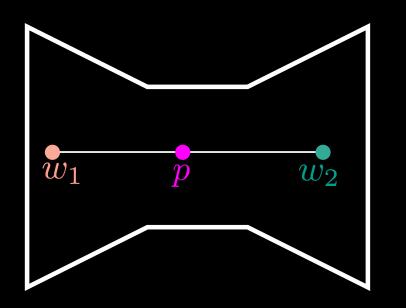
must see each point in P

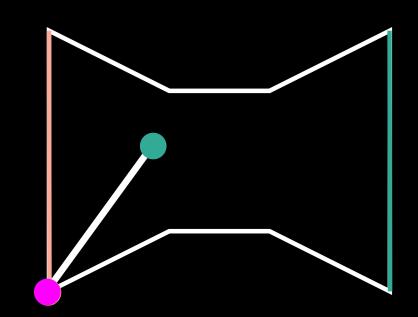
- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P

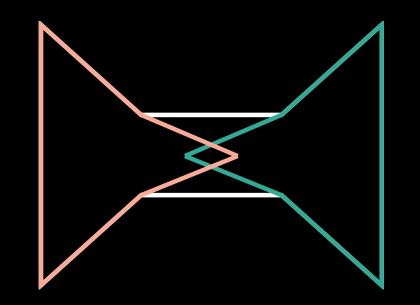
Two routes W_1 and W_2 are segment watchman routes if for every point p in the polygon, there exists $w_1 \in W_1$ and $w_2 \in W_2$, such that p is segment-guarded by w_1 and w_2 .

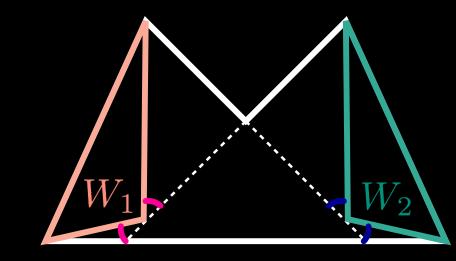
We do not require the watchmen to be at w_1 and w_2 at the same time!

Objectives? Still min-max or min-sum









Both are watchman routes:

Each segment watchman route must see each point in P

Convex vertices must be visited Routes may intersect

A point p is segment-guarded by two points w_1 and w_2 in the polygon, if:

- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

Two routes W_1 and W_2 are segment watchman routes if for every point in the polygon, there exists $w_1 \in W_1$ and $w_2 \in W_2$, such that p is segment-guarded by w_1 and w_2 .

Can be generalized to:

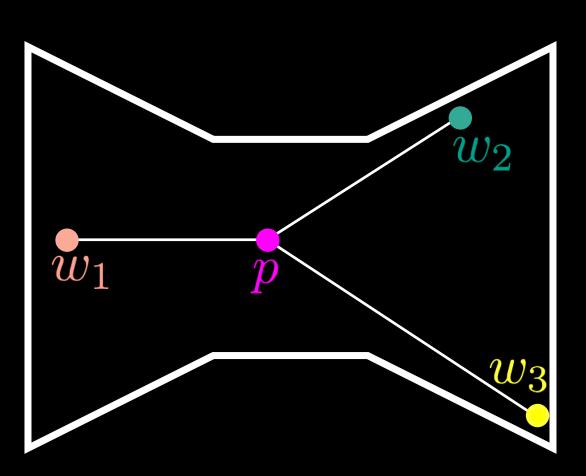
A point p is segment-guarded by two points w_1 and w_2 in the polygon, if:

- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

Two routes W_1 and W_2 are segment watchman routes if for every point in the polygon, there exists $w_1 \in W_1$ and $w_2 \in W_2$, such that p is segment-guarded by w_1 and w_2 .

Can be generalized to:

Triangle-guarded points



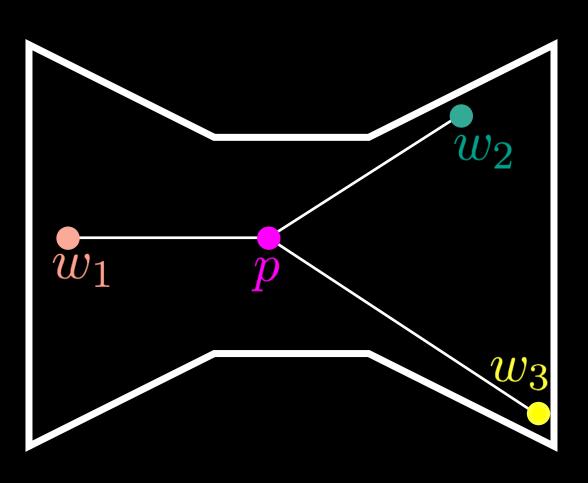
A point p is segment-guarded by two points w_1 and w_2 in the polygon, if:

- p lies on the segment $\overline{w_1w_2}$
- p is visible from w_1 and $w_2(\overline{w_1w_2})$ fully contained in P)

Two routes W_1 and W_2 are segment watchman routes if for every point in the polygon, there exists $w_1 \in W_1$ and $w_2 \in W_2$, such that p is segment-guarded by w_1 and w_2 .

Can be generalized to:

- Triangle-guarded points
- k-gon-guarded points



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

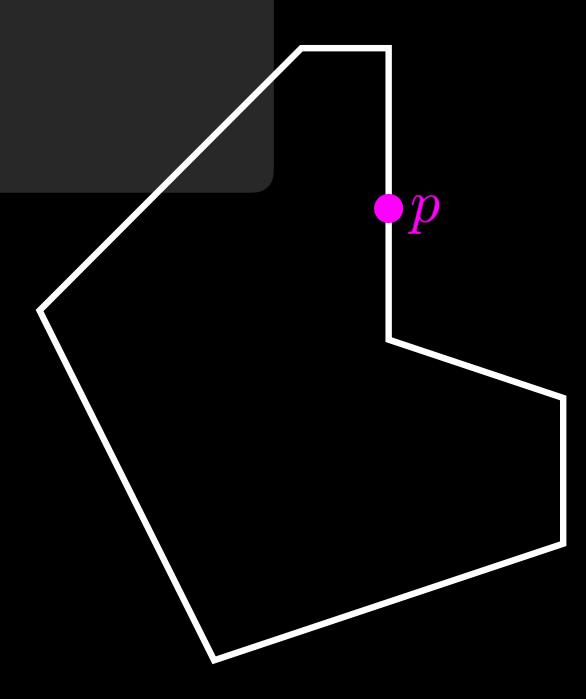
- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof: First show (2) $\Rightarrow W_1$ and W_2 are watchman routes

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof: First show (2) \Rightarrow W_1 and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

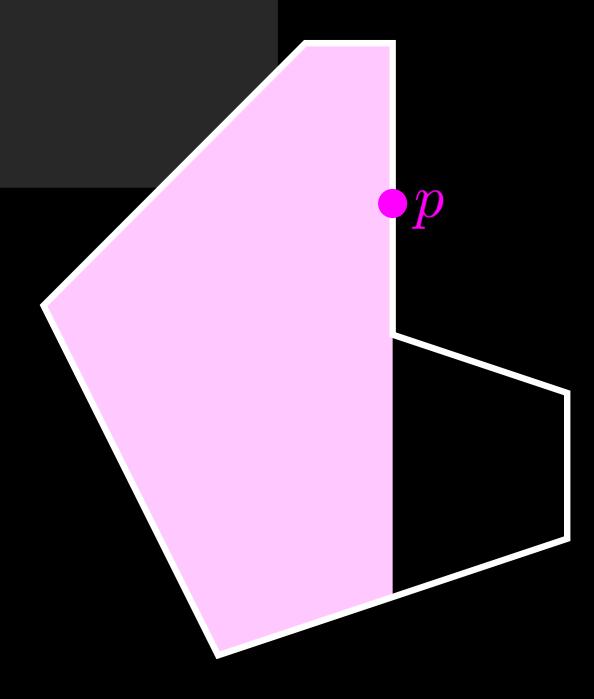


Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof: First show (2) \Rightarrow W_1 and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

 \rightarrow W_i is fully contained in a pocket P' of p's visibility polygon.

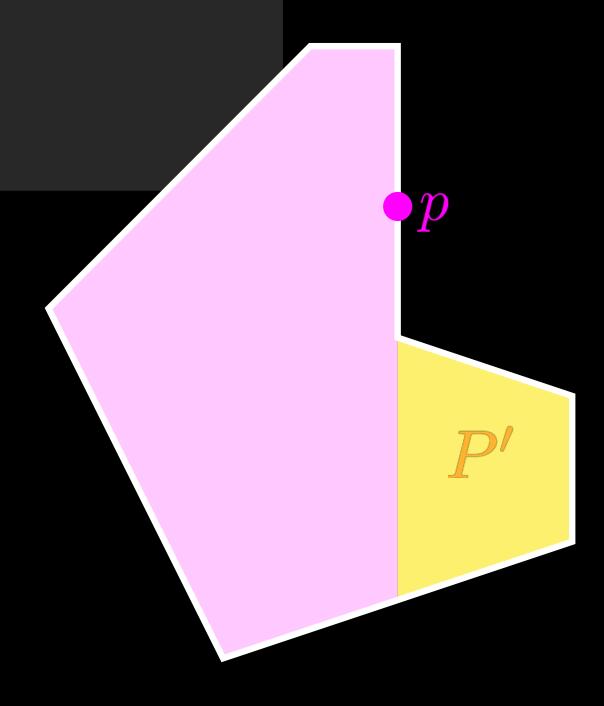


Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof: First show (2) \Rightarrow W_1 and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

 \rightarrow W_i is fully contained in a pocket P' of p's visibility polygon.



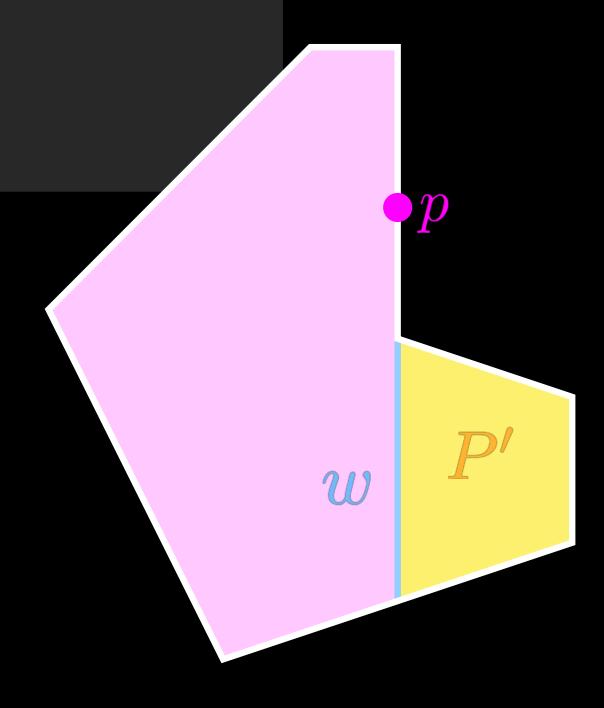
Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof: First show (2) \Rightarrow W_1 and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

 \rightarrow W_i is fully contained in a pocket P' of p's visibility polygon.

Extend window w of the pocket into a maximal line segment ℓ



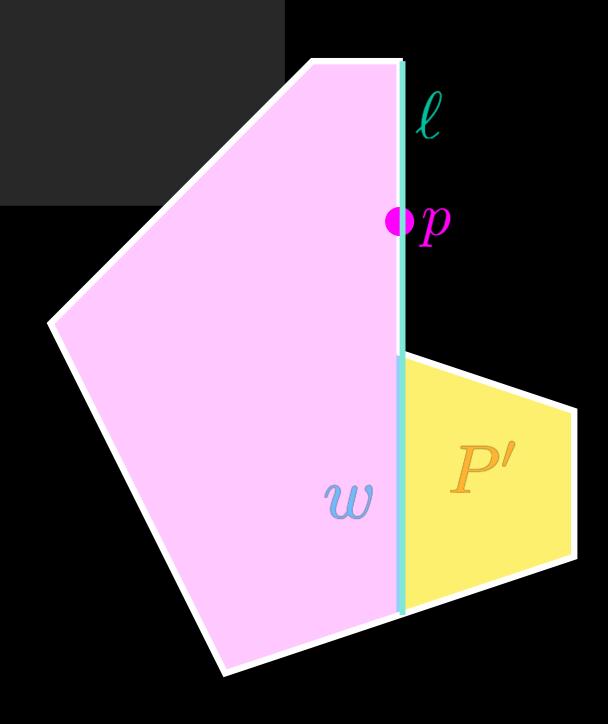
Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof: First show (2) \Rightarrow W_1 and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

 \rightarrow W_i is fully contained in a pocket P' of p's visibility polygon.

Extend window w of the pocket into a maximal line segment ℓ



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

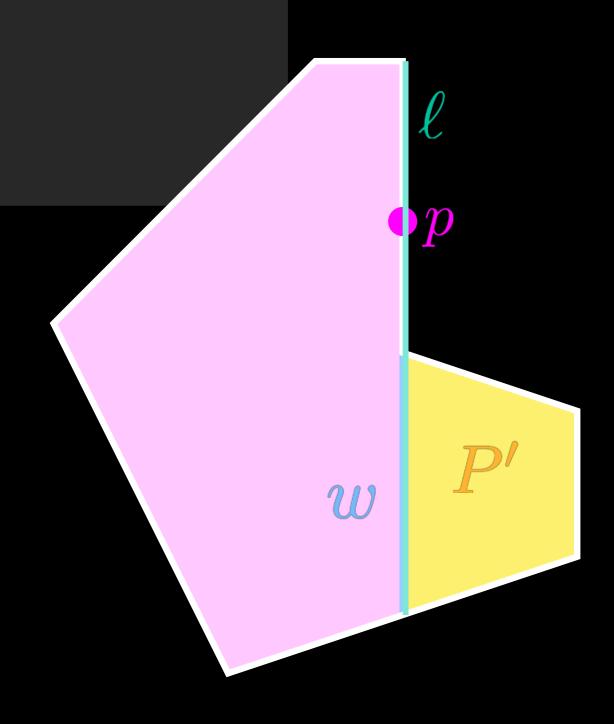
- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof: First show (2) \Rightarrow W_1 and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

 \rightarrow W_i is fully contained in a pocket P' of p's visibility polygon.

Extend window w of the pocket into a maximal line segment ℓ

We know: $p \in \ell \rightarrow \text{Segment } \ell \backslash w$:



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

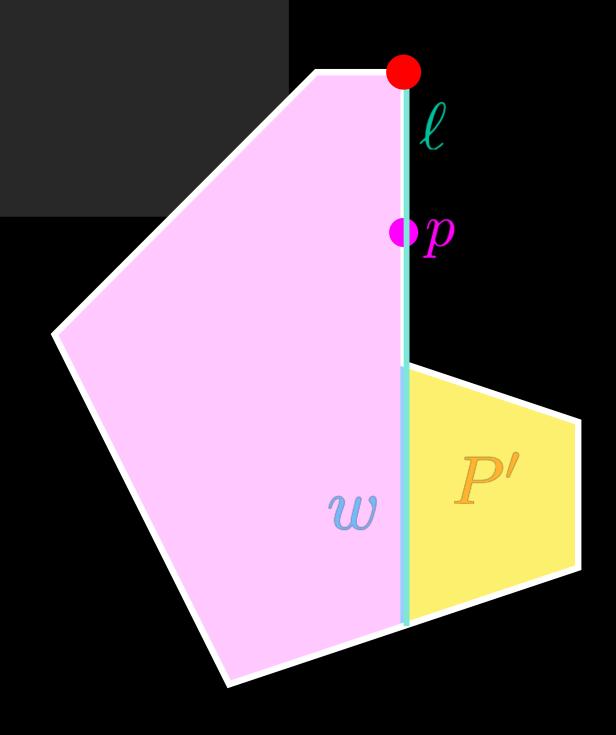
Proof: First show (2) $\Rightarrow W_1$ and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

 \rightarrow W_i is fully contained in a pocket P' of p's visibility polygon.

Extend window w of the pocket into a maximal line segment ℓ

We know: $p \in \ell \rightarrow \text{Segment } \ell \backslash w$:

• Is polygonal edge with a convex endpoint not seen by W_i



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

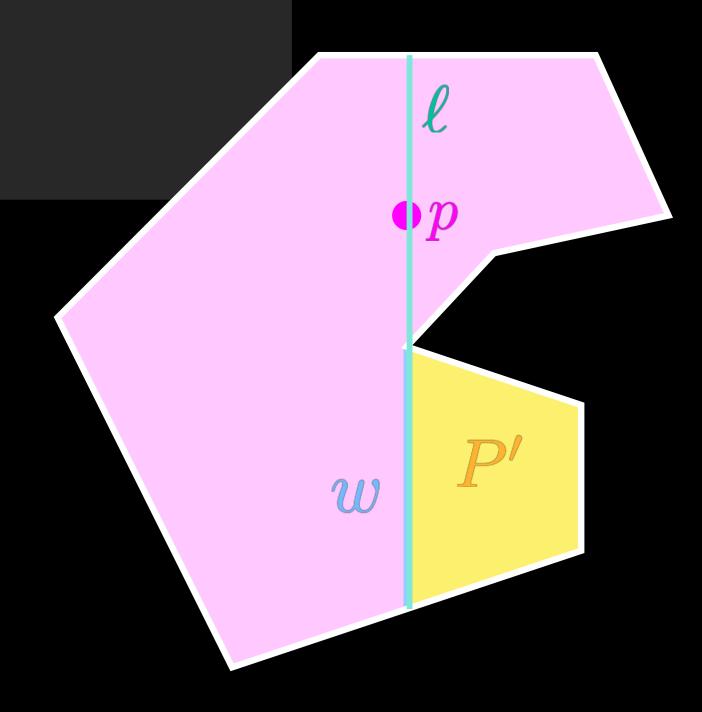
Proof: First show (2) $\Rightarrow W_1$ and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

 \rightarrow W_i is fully contained in a pocket P' of p's visibility polygon.

Extend window w of the pocket into a maximal line segment ℓ

We know: $p \in \ell \rightarrow \text{Segment } \ell \backslash w$:

- Is polygonal edge with a convex endpoint not seen by W_i
- Splits *P* into at least two subpolygons.



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

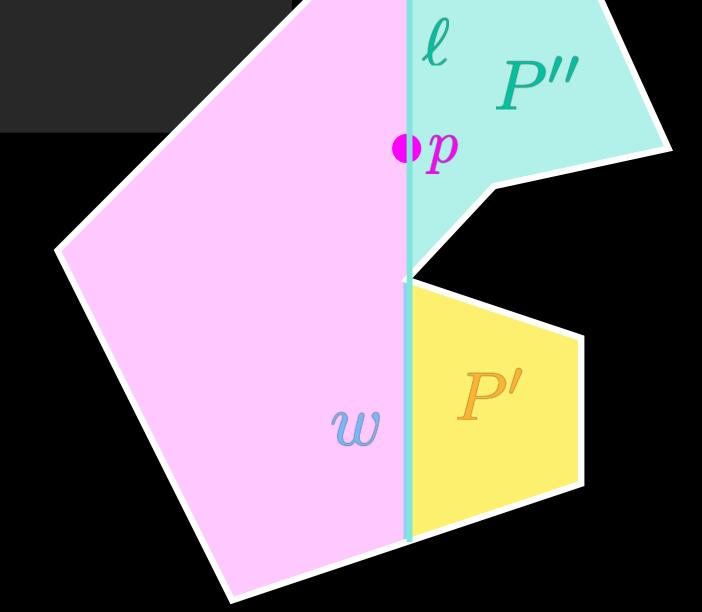
Proof: First show (2) $\Rightarrow W_1$ and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

 \rightarrow W_i is fully contained in a pocket P' of p's visibility polygon.

Extend window w of the pocket into a maximal line segment ℓ

We know: $p \in \ell \rightarrow \text{Segment } \ell \backslash w$:

- Is polygonal edge with a convex endpoint not seen by W_i
- Splits \overline{P} into at least two subpolygons. At least one of those (P") also right of $\ell \to W_i$ cannot see any convex vertex in P"



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

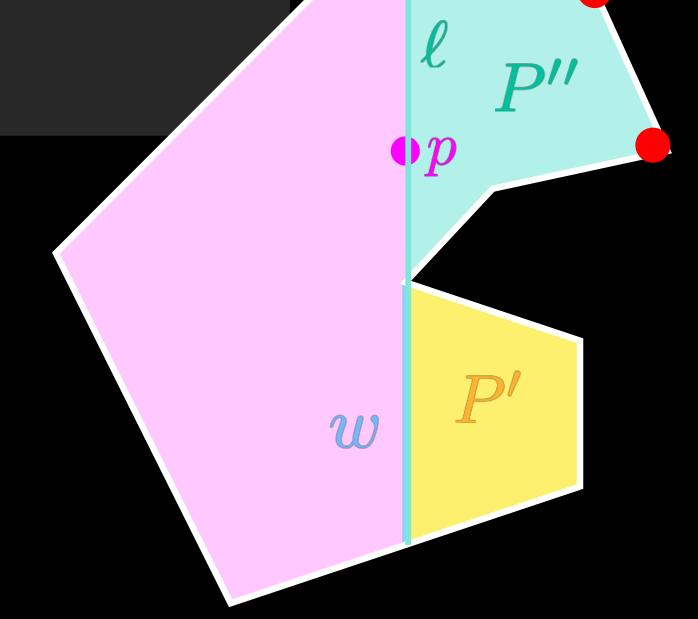
Proof: First show (2) \Rightarrow W_1 and W_2 are watchman routes Assume $p \in P$ is not seen by W_i

 \rightarrow W_i is fully contained in a pocket P' of p's visibility polygon.

Extend window w of the pocket into a maximal line segment ℓ

We know: $p \in \ell \rightarrow \text{Segment } \ell \backslash w$:

- Is polygonal edge with a convex endpoint not seen by W_i
- Splits \overline{P} into at least two subpolygons. At least one of those (P") also right of $\ell \to W_i$ cannot see any convex vertex in P"



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) $\Rightarrow W_1$ and W_2 are segment watchman routes

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

Consider $p \in P$

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

Consider $p \in P$

Both W_1 and W_2 are watchman routes

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

Consider $p \in P$

Both W_1 and W_2 are watchman routes

→ At least one point on each route sees p

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

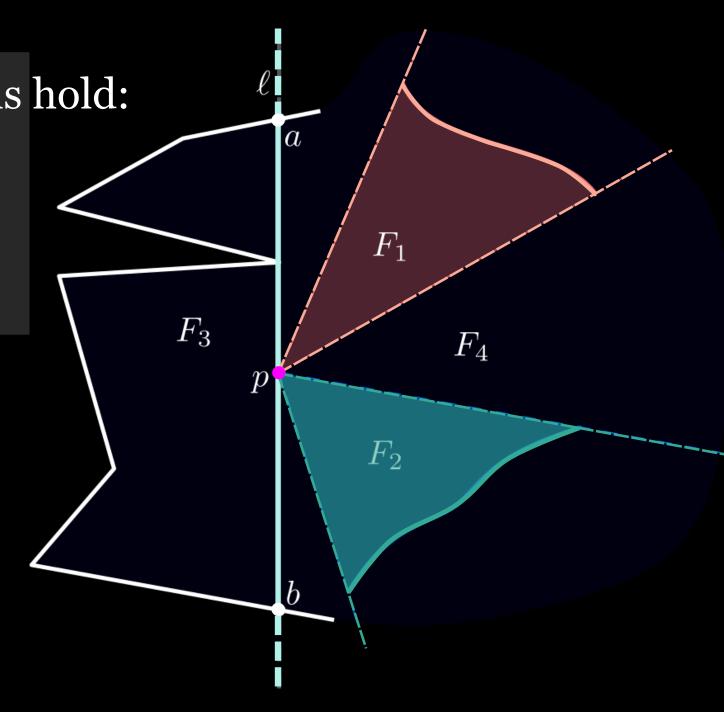
Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

Consider $p \in P$

Both W_1 and W_2 are watchman routes

→ At least one point on each route sees p

Consider two maximal wedges defined by angles from which p views $W_i - F_i$



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

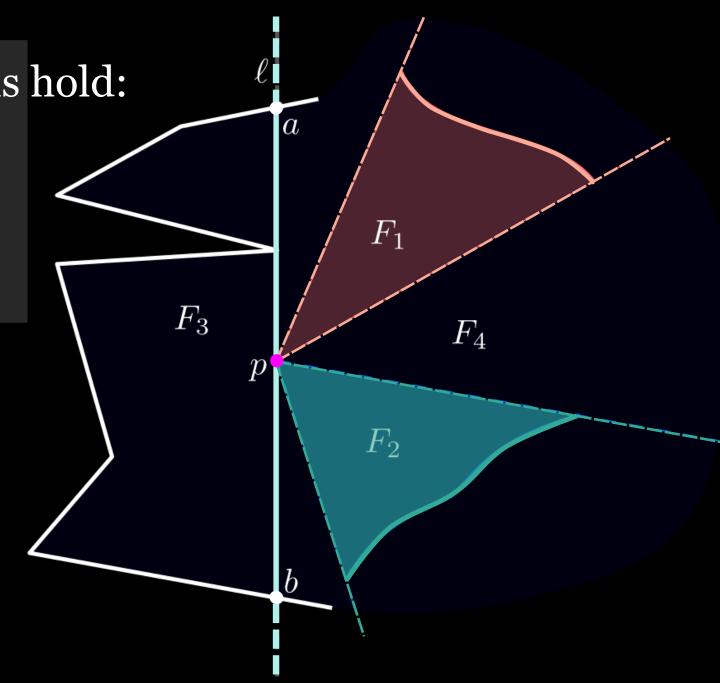
Consider $p \in P$

Both W_1 and W_2 are watchman routes

→ At least one point on each route sees p

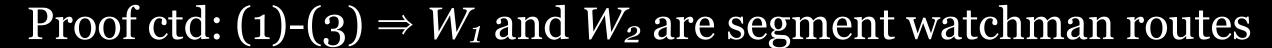
Consider two maximal wedges defined by angles from which p views $W_i - F_i$

Each of F_1 and F_2 covers either 360° or less than 180° (p within RCH and routes relatively convex):



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.



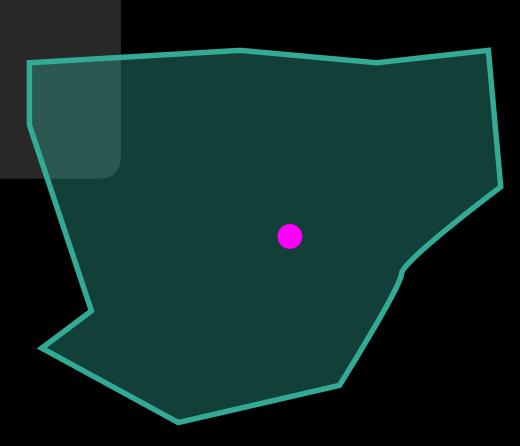
Consider $p \in P$

Both W_1 and W_2 are watchman routes

→ At least one point on each route sees p

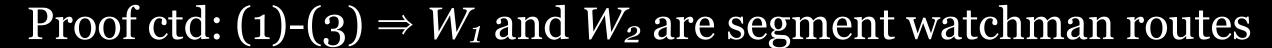
Consider two maximal wedges defined by angles from which p views $W_i - F_i$

• One (F_2) covers 360° : let $w_1 \in W_1$ be a point that sees p



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.



Consider $p \in P$

Both W_1 and W_2 are watchman routes

→ At least one point on each route sees p

Consider two maximal wedges defined by angles from which p views $W_i - F_i$



Each of F_1 and F_2 covers either 360° or less than 180° (p within RCH and routes relatively convex):

• One (F_2) covers 360°: let $w_1 \in W_1$ be a point that sees p

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

Consider $p \in P$

Both W_1 and W_2 are watchman routes

→ At least one point on each route sees p

Consider two maximal wedges defined by angles from which p views $W_i - F_i$

Each of F_1 and F_2 covers either 360° or less than 180° (p within RCH and routes relatively convex):

- One (F_2) covers 360°: let $w_1 \in W_1$ be a point that sees p
- \rightarrow Ray from w_1 in direction of p intersects W_2 at point w_2 that sees p

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

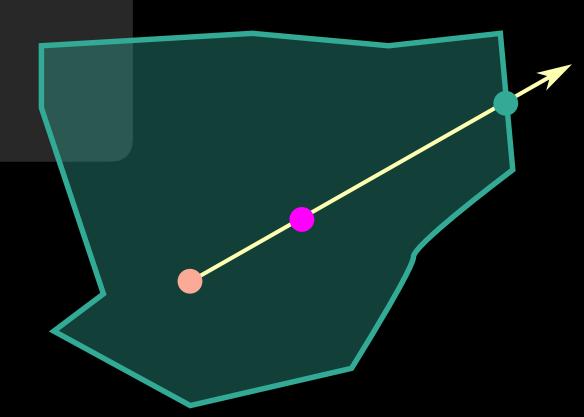
Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

Consider $p \in P$

Both W_1 and W_2 are watchman routes

→ At least one point on each route sees p

Consider two maximal wedges defined by angles from which p views $W_i - F_i$



Each of F_1 and F_2 covers either 360° or less than 180° (p within RCH and routes relatively convex):

- One (F_2) covers 360°: let $w_1 \in W_1$ be a point that sees p
- \rightarrow Ray from w_1 in direction of p intersects W_2 at point w_2 that sees p
- $\rightarrow p$ is segment guarded by $\overline{w_1w_2}$

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

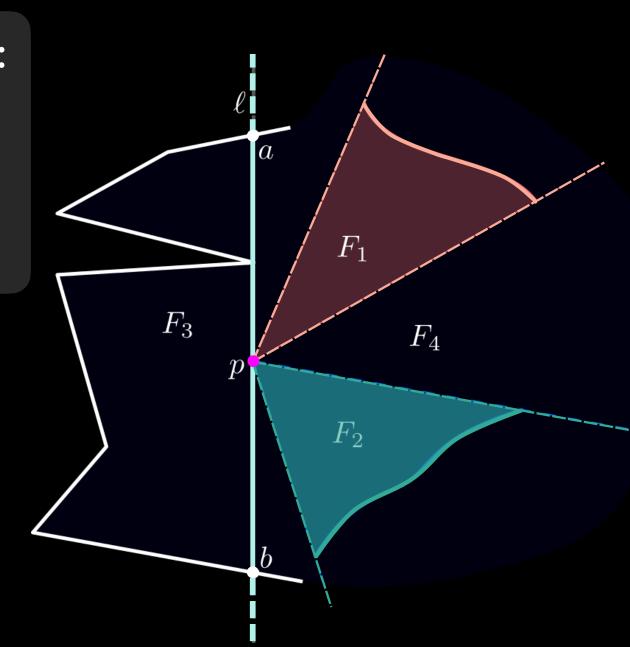
Proof ctd: (1)-(3) $\Rightarrow W_1$ and W_2 are segment watchman routes

Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

• Neither F_1 nor F_2 covers 360°



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

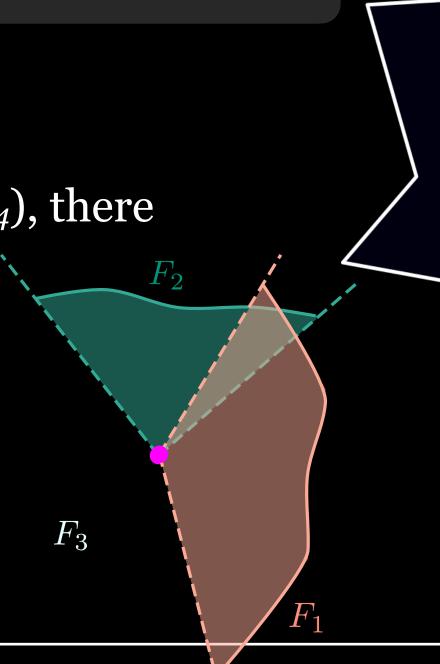
- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

• Neither F_1 nor F_2 covers 360°

 F_3 (and maybe F_4): maximal wedge(s), such that for each ray in F_3 (F_4), there

is no point $w_1 \in W_1$ and $w_2 \in W_2$ in that direction that p sees



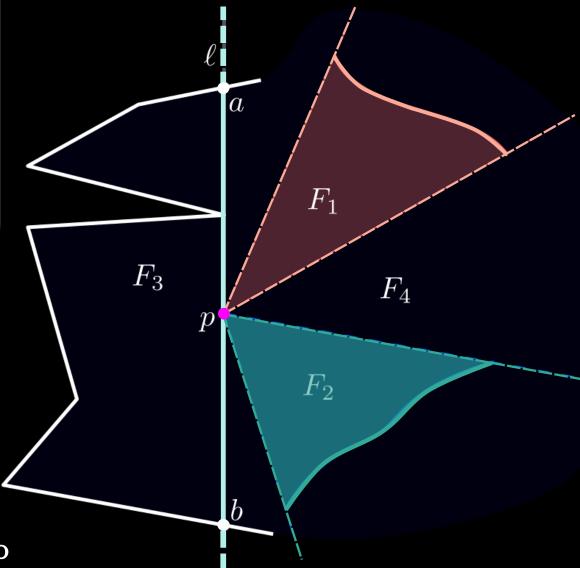
Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

• Neither F_1 nor F_2 covers 360° F_3 (and maybe F_4): maximal wedge(s), such that for each ray in F_3 (F_4), there is no point $w_1 \in W_1$ and $w_2 \in W_2$ in that direction that p sees

Claim: F_3 or F_4 cannot cover more than 180°. W.l.o.g. assume F_3 covers more than 180°.



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

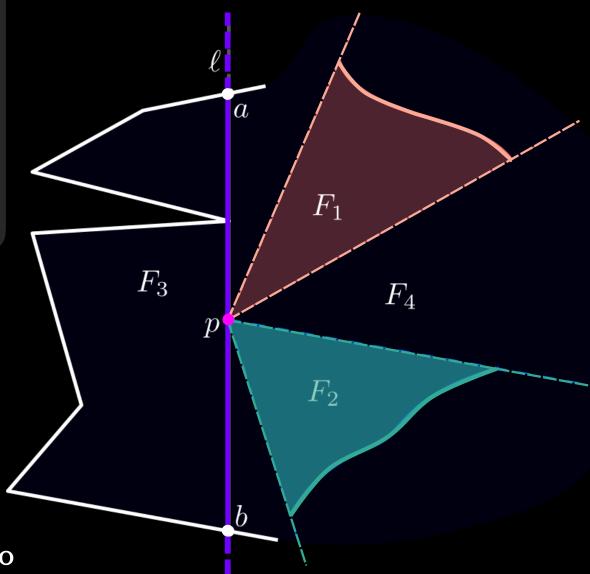
- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

• Neither F_1 nor F_2 covers 360° F_3 (and maybe F_4): maximal wedge(s), such that for each ray in F_3 (F_4), there is no point $w_1 \in W_1$ and $w_2 \in W_2$ in that direction that p sees

Claim: F_3 or F_4 cannot cover more than 180°. W.l.o.g. assume F_3 covers more than 180°.

Line ℓ through p in F_3 that does not contain edge of P, and F_1 , F_2 on right side of ℓ



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

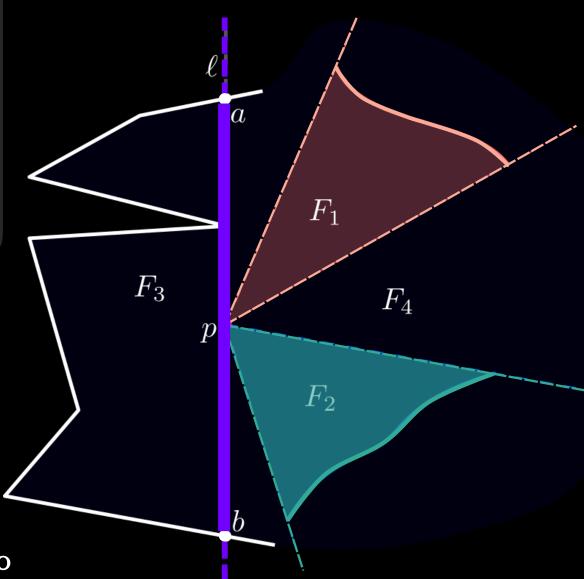
- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

• Neither F_1 nor F_2 covers 360° F_3 (and maybe F_4): maximal wedge(s), such that for each ray in F_3 (F_4), there is no point $w_1 \in W_1$ and $w_2 \in W_2$ in that direction that p sees

Claim: F_3 or F_4 cannot cover more than 180°. W.l.o.g. assume F_3 covers more than 180°.

Line ℓ through p in F_3 that does not contain edge of P, and F_1 , F_2 on right side of ℓ ab max line segment on ℓ in P



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

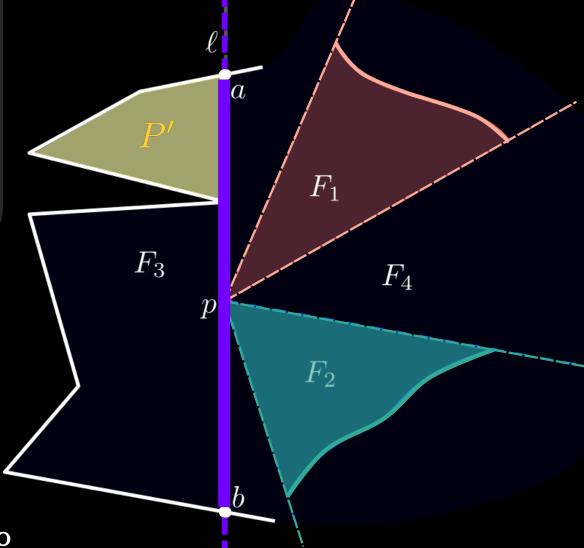
Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

• Neither F_1 nor F_2 covers 360° F_3 (and maybe F_4): maximal wedge(s), such that for each ray in F_3 (F_4), there is no point $w_1 \in W_1$ and $w_2 \in W_2$ in that direction that p sees

Claim: F_3 or F_4 cannot cover more than 180°. W.l.o.g. assume F_3 covers more than 180°.

Line ℓ through p in F_3 that does not contain edge of P, and F_1 , F_2 on right side of ℓ

- *ab* max line segment on ℓ in *P*
- \overline{ab} splits P in at least two subpolygons, at least one left of \overline{ab} (P')



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

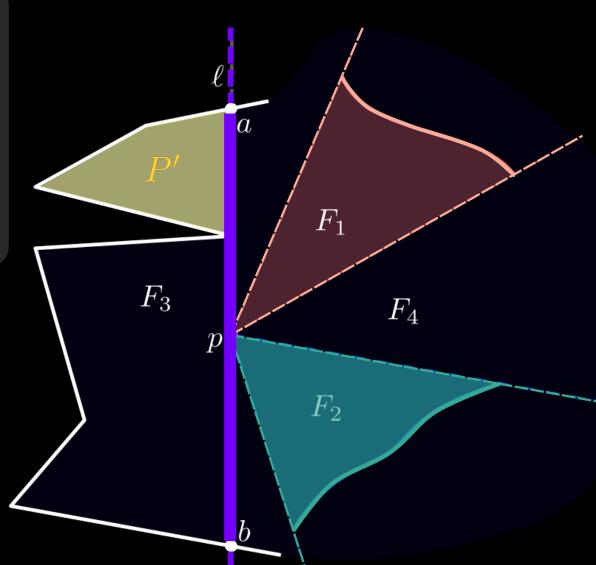
Proof ctd: (1)-(3) \Rightarrow W_1 and W_2 are segment watchman routes

• Neither F_1 nor F_2 covers 360° F_3 (and maybe F_4): maximal wedge(s), such that for each ray in F_3 (F_4), there is no point $w_1 \in W_1$ and $w_2 \in W_2$ in that direction that p sees

Claim: F_3 or F_4 cannot cover more than 180°. W.l.o.g. assume F_3 covers more than 180°.

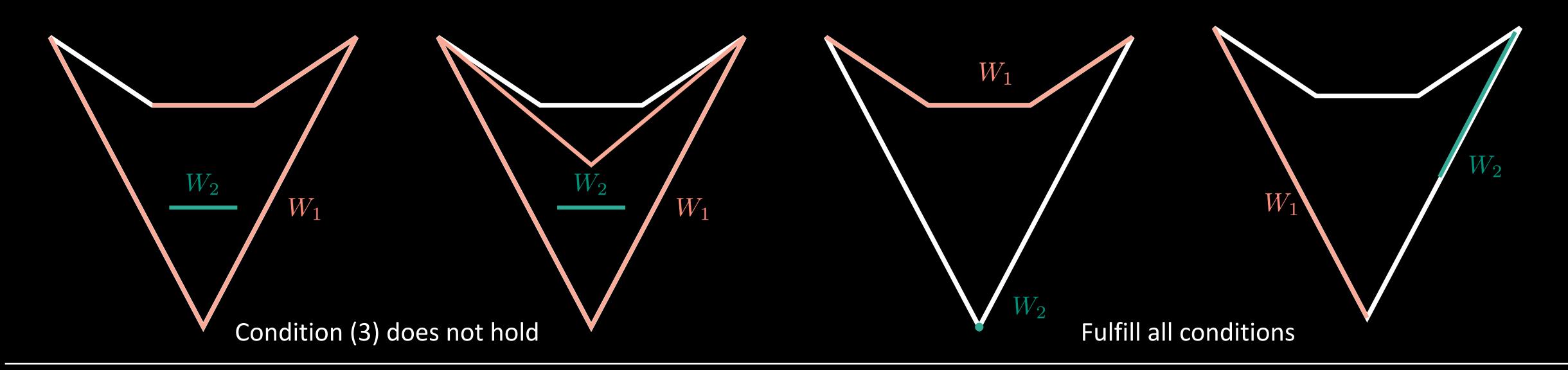
Line ℓ through p in F_3 that does not contain edge of P, and F_1 , F_2 on right side of ℓ

- *ab* max line segment on ℓ in *P*
- \overline{ab} splits P in at least two subpolygons, at least one left of \overline{ab} (P')
- P' must contain a convex vertex v, but no points of W_1 and W_2 in P' \mathcal{I}



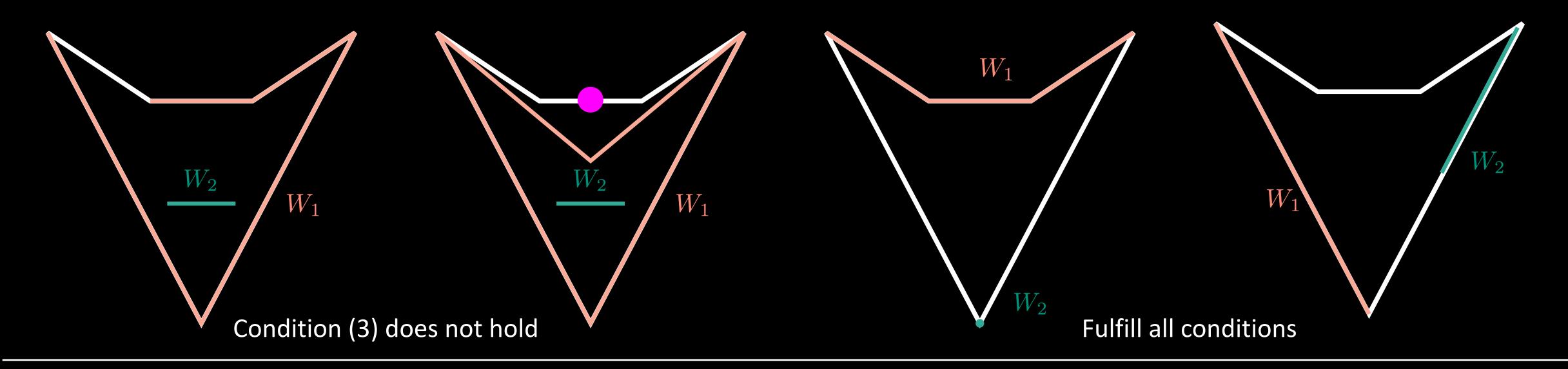
Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

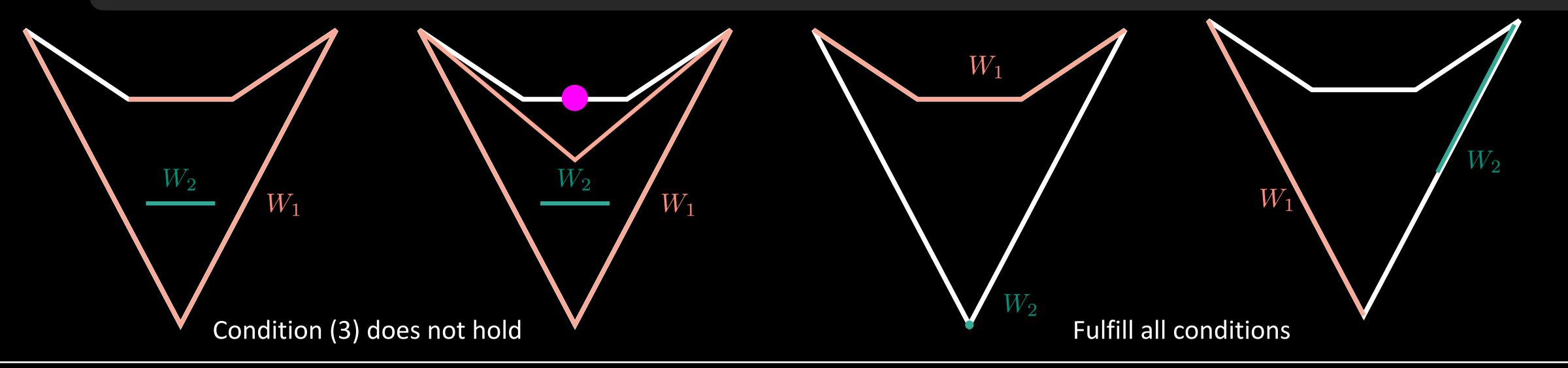
- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.



Two routes W_1 and W_2 are segment watchman routes for P if the following conditions hold:

- 1. Every convex vertex is visited by one of W_1 or W_2 .
- 2. Both W_1 and W_2 visit the visibility polygon of each convex vertex.
- 3. Both W_1 and W_2 are simple and relatively convex*.

Two routes W_1 and W_2 are **optimal** segment watchman routes for P if and only if conditions of the lemma hold.



Our Results

Min-max objective:

- NP-hard even for simple polygons
- Polynomial-time 2-approximation algorithm
- For larger k: (k+1)-approximation algorithm

Min-sum objective:

- Polynomial-time 2-approximation algorithm
- Polynomial-time algorithm for convex polygons

Our Results

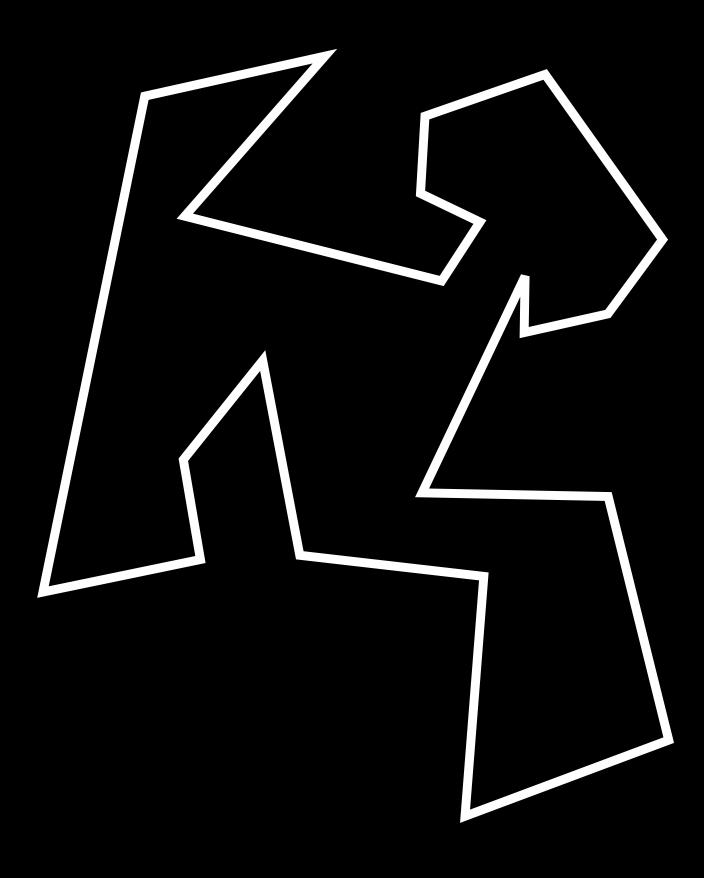
Min-max objective:

- NP-hard even for simple polygons
- Polynomial-time 2-approximation algorithm
- For larger k: (k+1)-approximation algorithm

Min-sum objective:

- Polynomial-time 2-approximation algorithm
- Polynomial-time algorithm for convex polygons

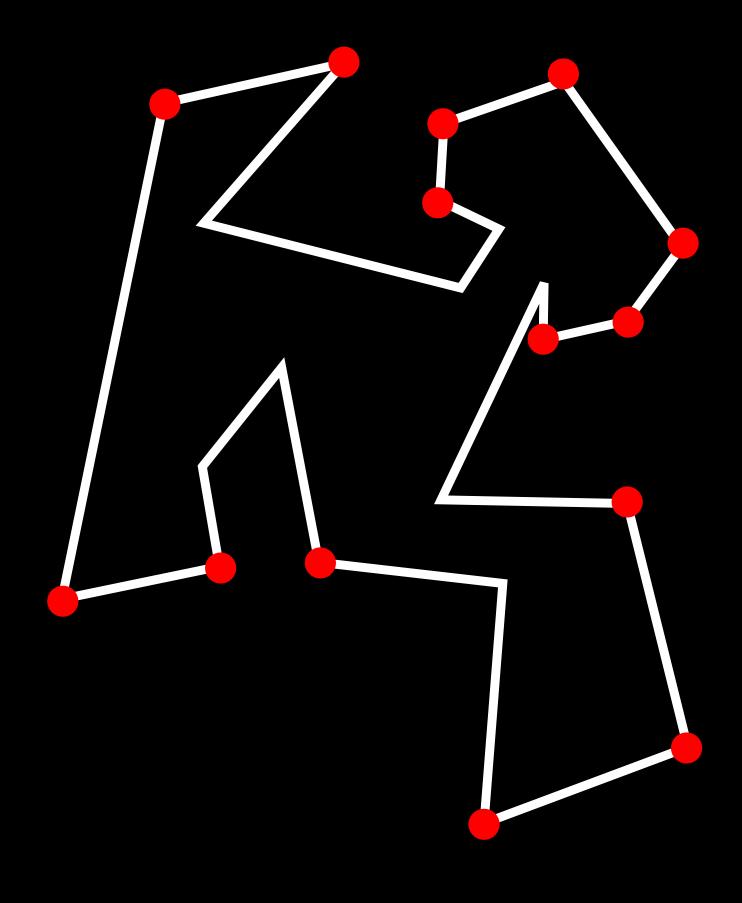
Idea:



Idea:

Each route:

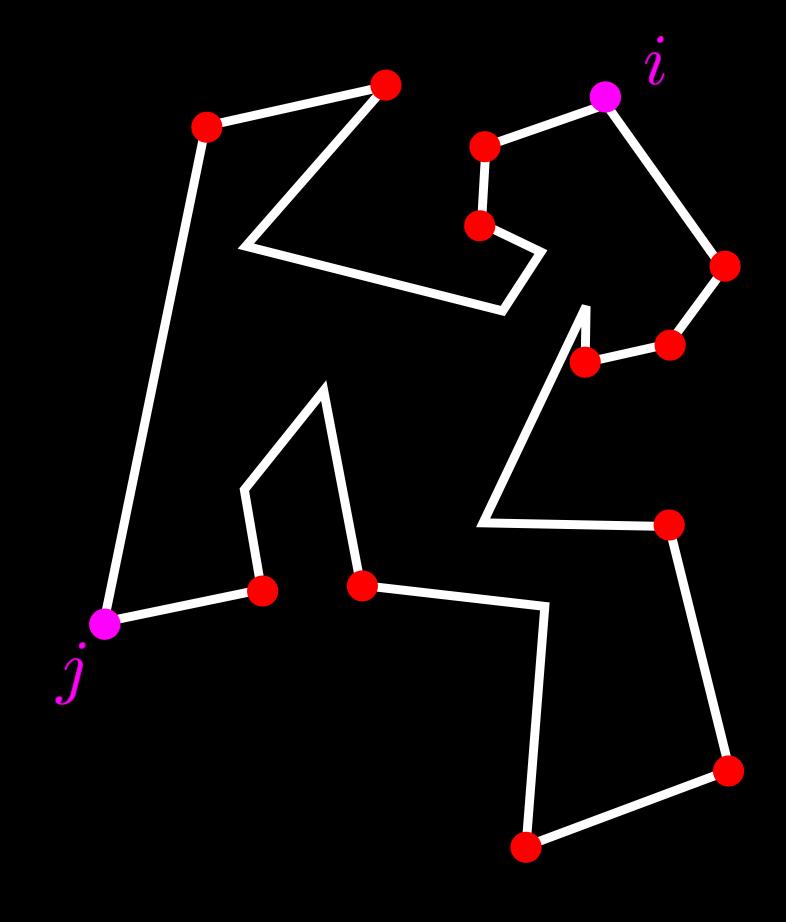
- Visits some convex vertices
- Sees all the other convex vertices



Idea:

Each route:

- Visits some convex vertices
- Sees all the other convex vertices



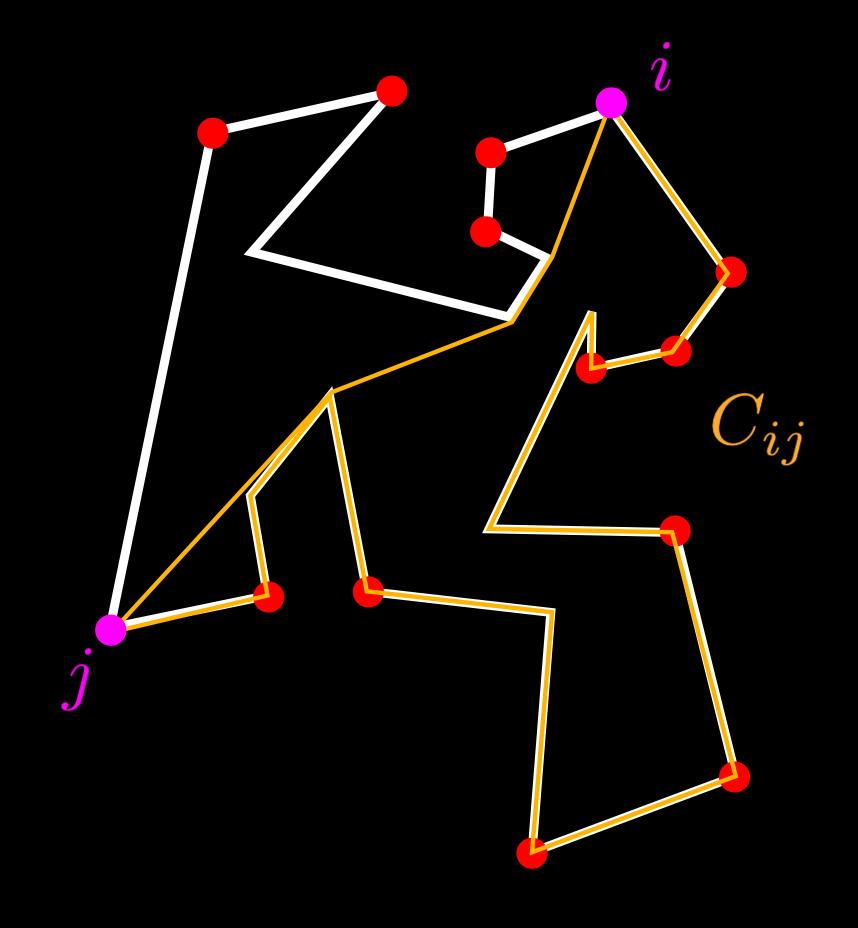
Idea:

Each route:

- Visits some convex vertices
- Sees all the other convex vertices

For each pair *ij* of convex vertices:

• Shortest tour that \mathbf{visits} all convex vertices between i and j

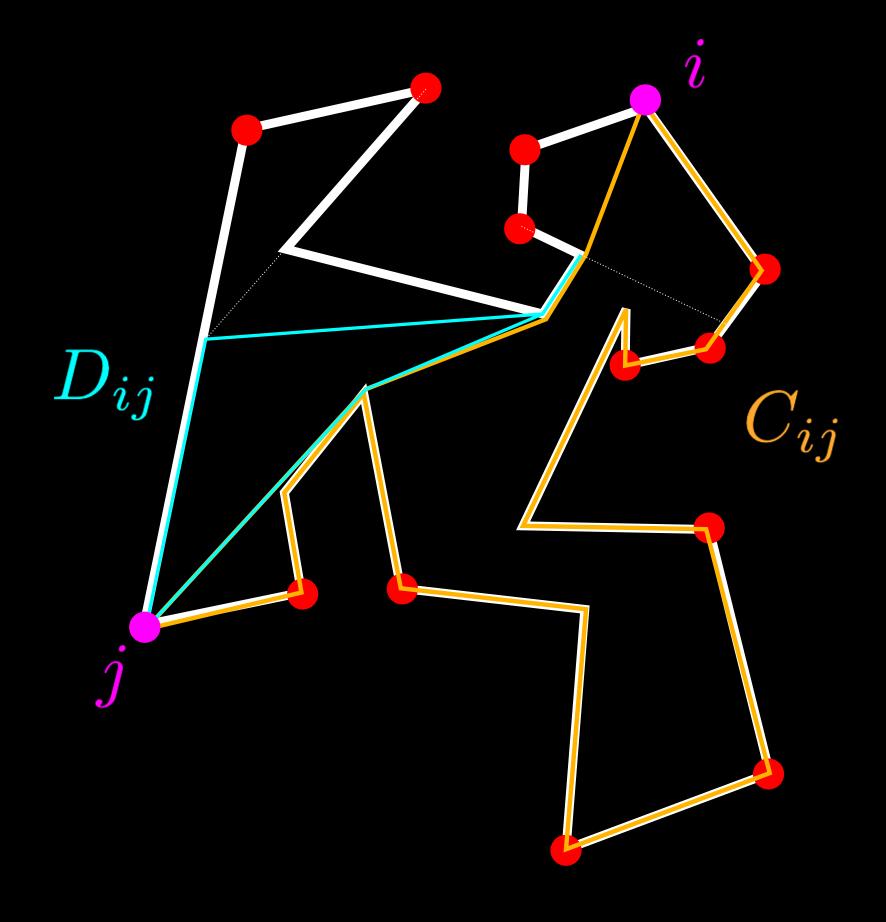


Idea:

Each route:

- Visits some convex vertices
- Sees all the other convex vertices

- Shortest tour that **visits** all convex vertices between *i* and *j*
- Shortest tour that \mathbf{sees} all convex vertices between j and i, starts at j

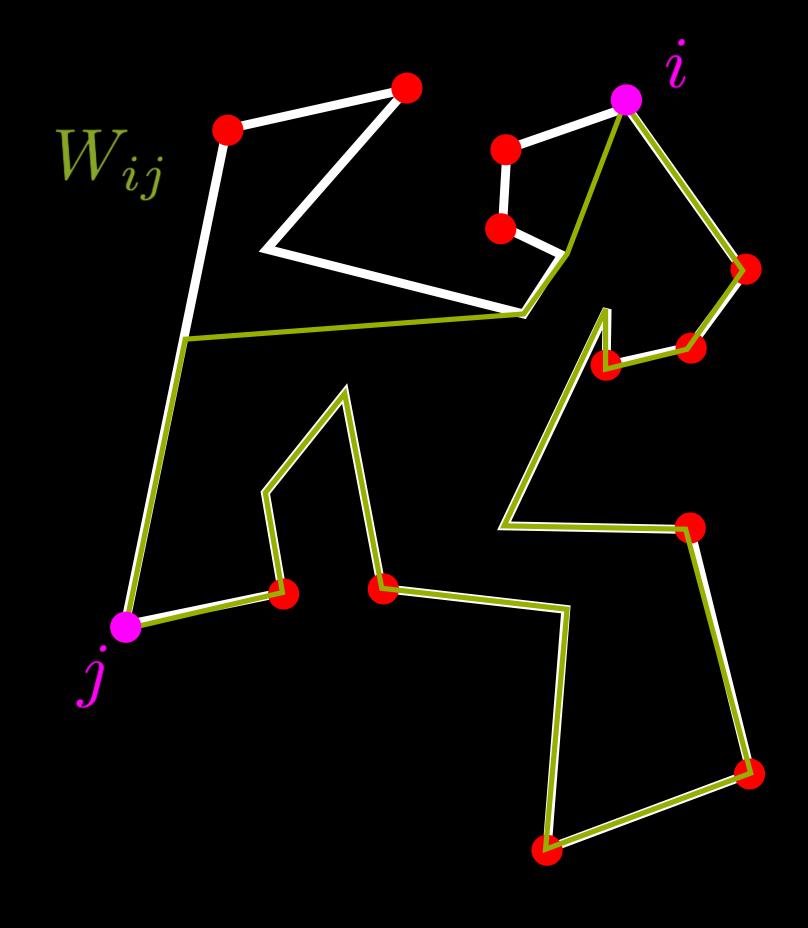


Idea:

Each route:

- Visits some convex vertices
- Sees all the other convex vertices

- Shortest tour that **visits** all convex vertices between i and j
- Shortest tour that **sees** all convex vertices between j and i, starts at j
- Take RCH* of orange and turquoise (someone needs to visit *j*)

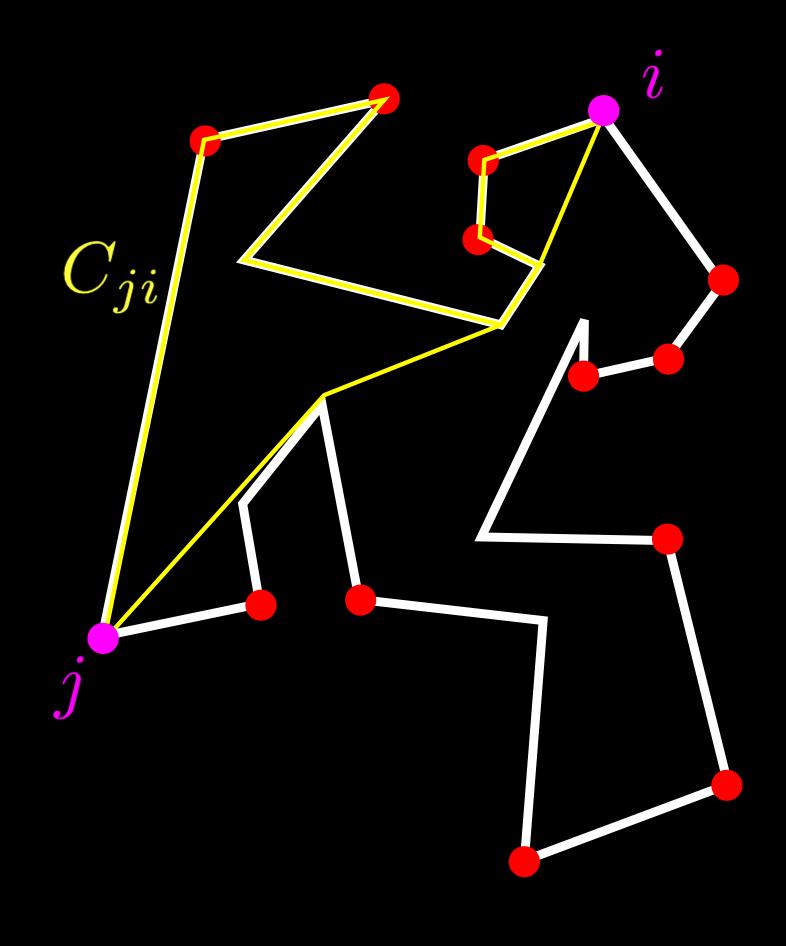


Idea:

Each route:

- Visits some convex vertices
- Sees all the other convex vertices

- Shortest tour that **visits** all convex vertices between *i* and *j*
- Shortest tour that **sees** all convex vertices between j and i, starts at j
- Take RCH* of orange and turquoise (someone needs to visit *j*)
- Shortest tour that **visits** all convex vertices between *j* and *i*

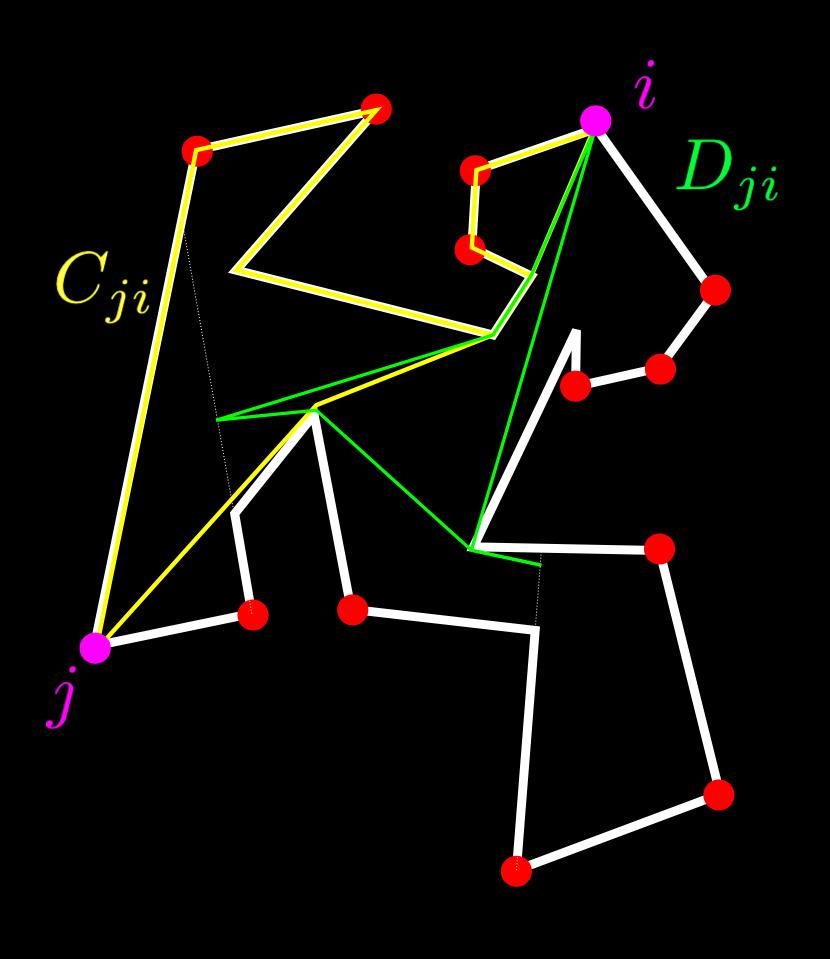


Idea:

Each route:

- Visits some convex vertices
- Sees all the other convex vertices

- Shortest tour that **visits** all convex vertices between *i* and *j*
- Shortest tour that **sees** all convex vertices between j and i, starts at j
- Take RCH* of orange and turquoise (someone needs to visit *j*)
- Shortest tour that **visits** all convex vertices between *j* and *i*
- Shortest tour that **sees** all convex vertices between i and j, starts at I

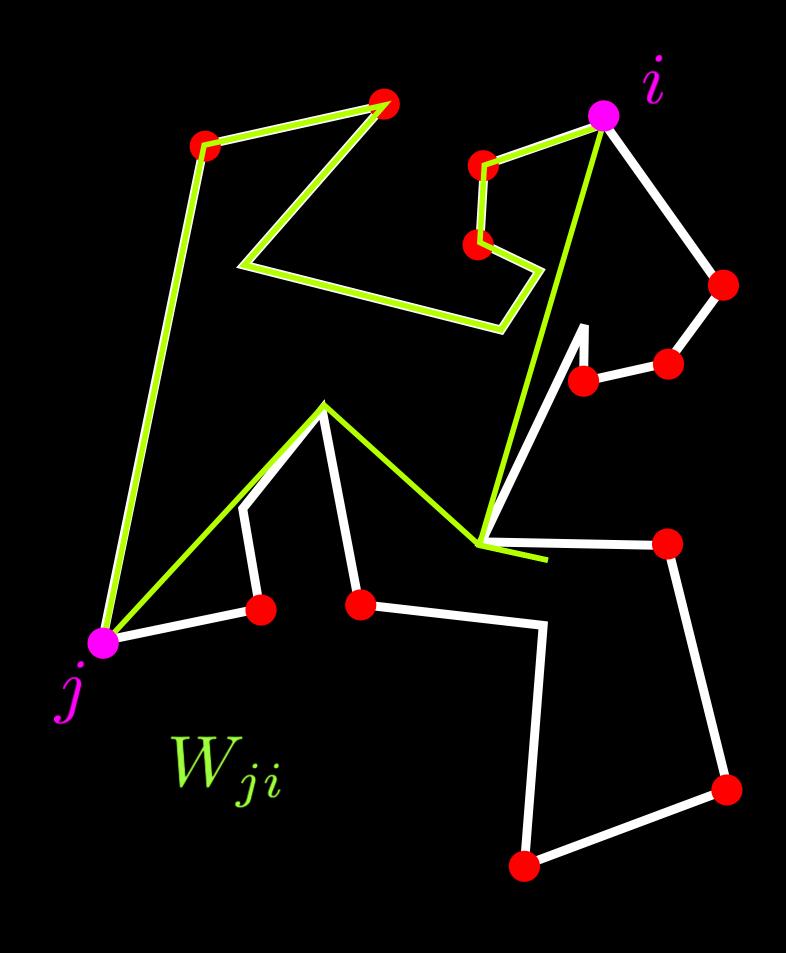


Idea:

Each route:

- Visits some convex vertices
- Sees all the other convex vertices

- Shortest tour that **visits** all convex vertices between *i* and *j*
- Shortest tour that **sees** all convex vertices between j and i, starts at j
- Take RCH* of orange and turquoise (someone needs to visit *j*)
- Shortest tour that **visits** all convex vertices between *j* and *i*
- Shortest tour that **sees** all convex vertices between i and j, starts at I
- Take RCH of yellow and green (someone needs to visit *i*)

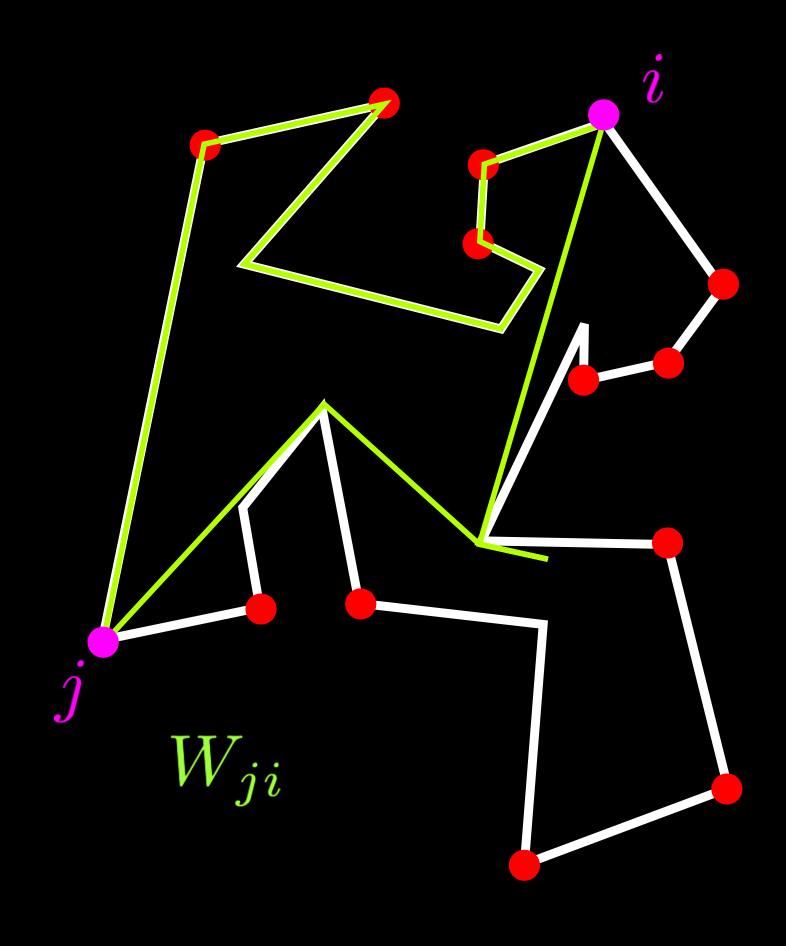


Idea:

Each route:

- Visits some convex vertices
- Sees all the other convex vertices

- Shortest tour that **visits** all convex vertices between *i* and *j*
- Shortest tour that **sees** all convex vertices between j and i, starts at j
- Take RCH* of orange and turquoise (someone needs to visit *j*)
- Shortest tour that **visits** all convex vertices between *j* and *i*
- Shortest tour that **sees** all convex vertices between i and j, starts at I
- Take RCH of yellow and green (someone needs to visit *i*)
- *C*^P tour that **visits** all convex vertices

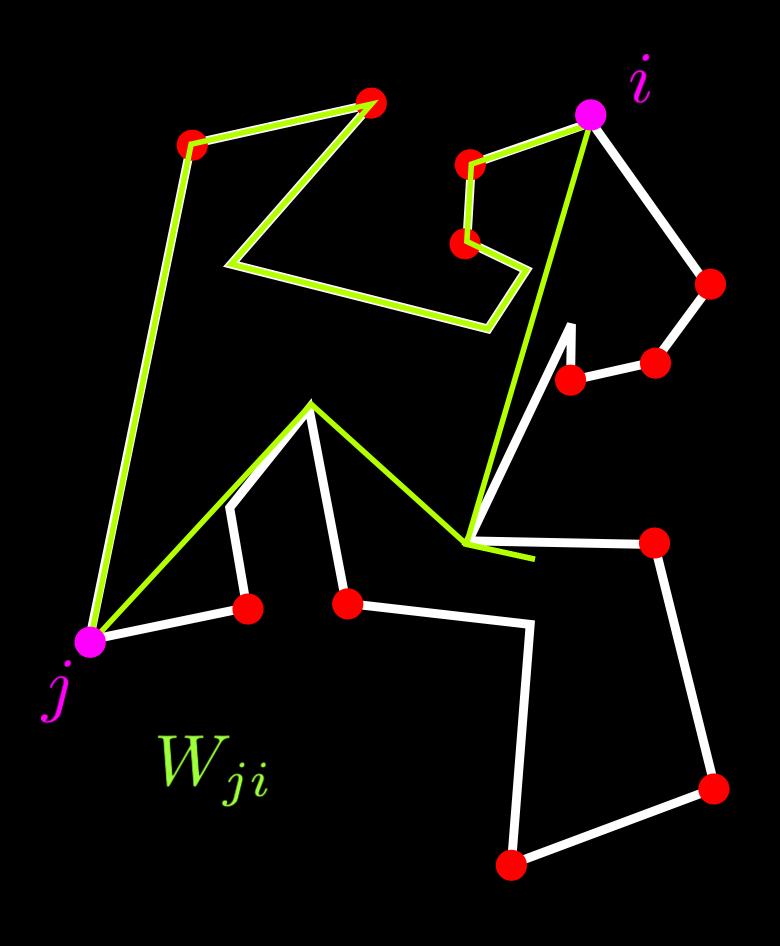


Idea:

Each route:

- Visits some convex vertices
- Sees all the other convex vertices

- Shortest tour that **visits** all convex vertices between *i* and *j*
- Shortest tour that **sees** all convex vertices between j and i, starts at j
- Take RCH* of orange and turquoise (someone needs to visit *j*)
- Shortest tour that **visits** all convex vertices between *j* and *i*
- Shortest tour that **sees** all convex vertices between i and j, starts at I
- Take RCH of yellow and green (someone needs to visit *i*)
- *C*_P tour that **visits** all convex vertices
- D_P tour that **sees** all convex vertices



Idea:

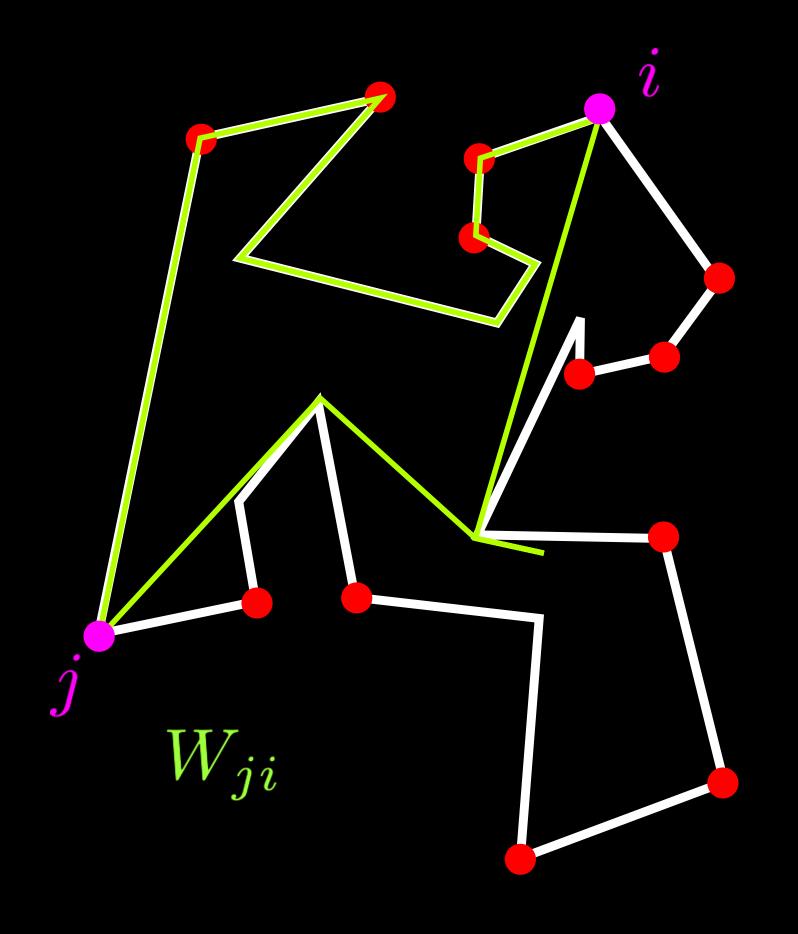
Each route:

- Visits some convex vertices
- Sees all the other convex vertices

For each pair *ij* of convex vertices:

- Shortest tour that **visits** all convex vertices between *i* and *j*
- Shortest tour that **sees** all convex vertices between j and i, starts at j
- Take RCH* of orange and turquoise (someone needs to visit *j*)
- Shortest tour that **visits** all convex vertices between *j* and *i*
- Shortest tour that **sees** all convex vertices between i and j, starts at I
- Take RCH of yellow and green (someone needs to visit *i*)
- *C*_P tour that **visits** all convex vertices
- D_P tour that **sees** all convex vertices
- Our approximation: $(W_1, W_2) = \arg\min \{\max\{|W_{ij}|, |W_{ji}|\}, \max\{|C_P|, |D_P|\}\}$

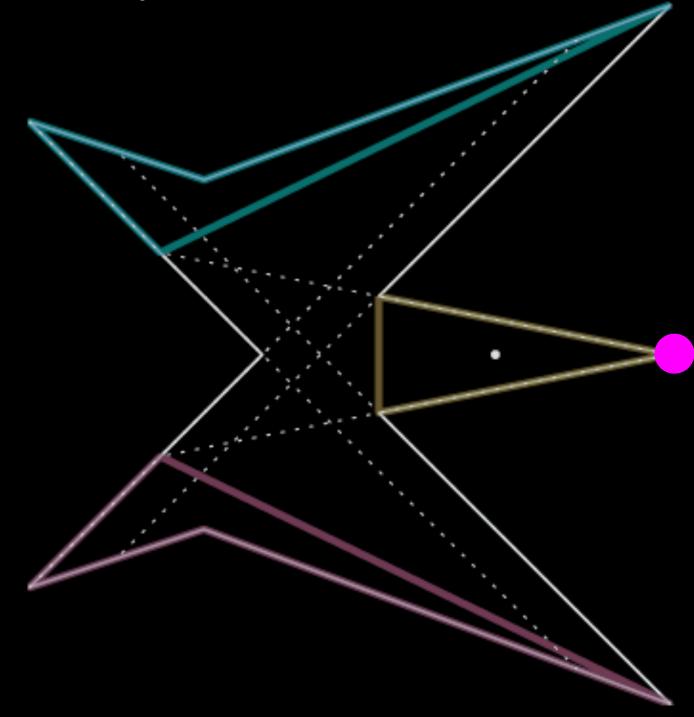
 $i\neq j$

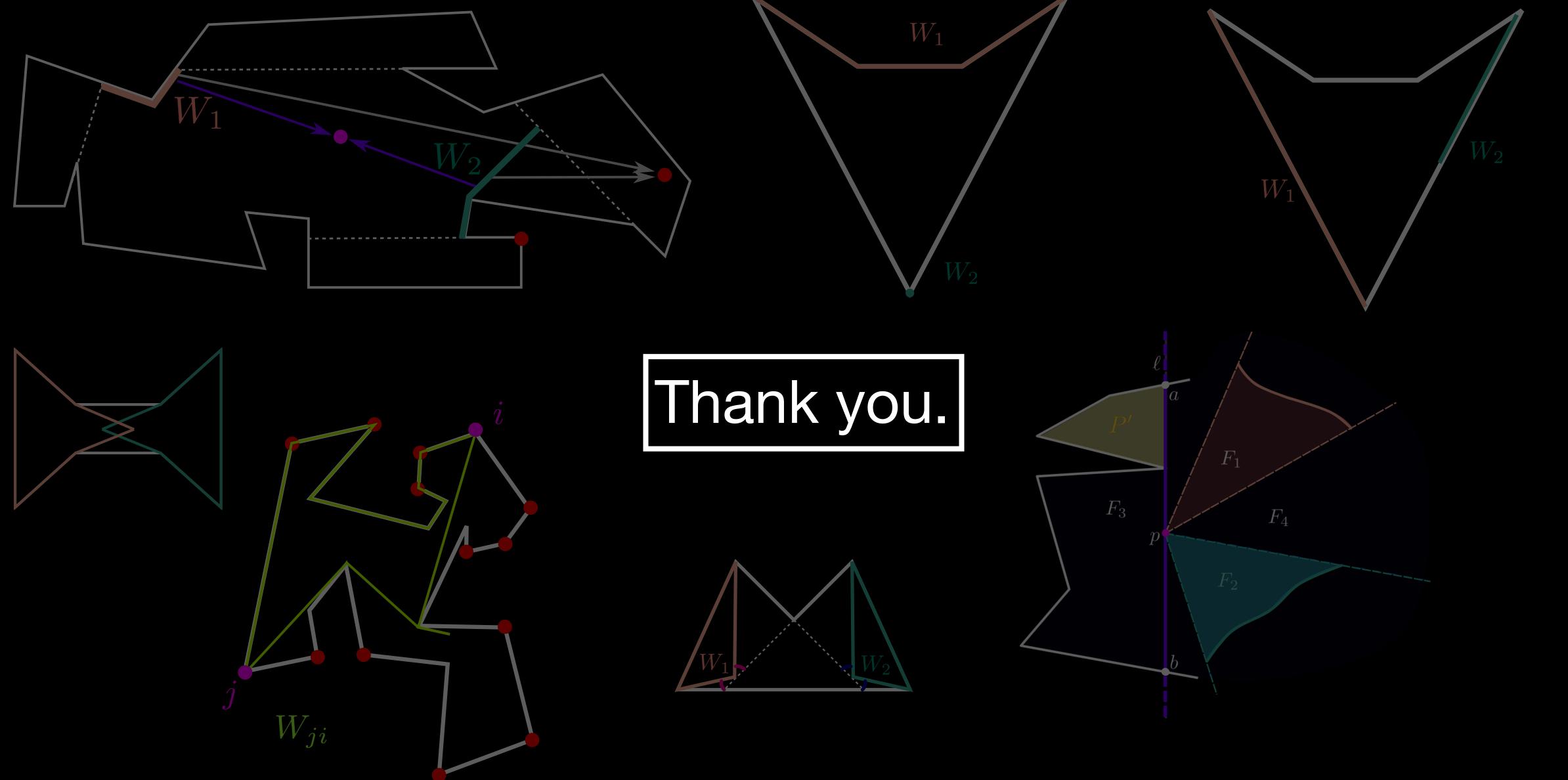


Outlook

Outlook

- Is the min-sum version NP-hard?
- Triangle-guarded points if the triangle must also be fully in *P*?





christiane.schmidt@liu.se
https://www.itn.liu.se/~chrsc91/